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Abstract. We consider scattering of a time harmonic incident plane wave by a con-
vex polygon with piecewise constant impedance boundary conditions. Standard finite
or boundary element methods require the number of degrees of freedom to grow at
least linearly with respect to the frequency of the incident wave in order to maintain
accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft
problem, we propose a novel Galerkin boundary element method, with the approxi-
mation space consisting of the products of plane waves with piecewise polynomials
supported on a graded mesh with smaller elements closer to the corners of the poly-
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well-defined as bounded linear operators, see [15], where also our various function space
notations are defined.) Then the scattering problem we consider is: given b∈L¥(G), find
the total field ut∈C2(D)∩H1

loc(D) such that

Dut+k2ut =0 in D, (1.1)
¶+

n ut+ikbg+ut =0 on G, (1.2)

and such that the scattered field us :=ut−ui satisfies the Sommerfeld radiation condition

¶us

¶r
(x)−ikus(x)= o

�
r−1/2

�
, (1.3)

as r := |x|→¥, uniformly with respect to x
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The approach we will take in this paper combines ideas from our earlier work for
sound soft convex polygons [6] with ideas developed for solving a two-dimensional
problem of high frequency scattering by an inhomogeneous half-plane of piecewise con-
stant impedance [7, 14]. In [7] a method in the spirit of the geometrical theory of diffrac-
tion was applied to obtain a representation of the solution, with the known leading order
behaviour being subtracted off, leaving only the remaining scattered field due to the dis-
continuities in the impedance boundary conditions to be approximated. This diffracted
field was expressed as a product of oscillatory and non-oscillatory functions, with a rigor-
ous error analysis, supported by numerical experiments, demonstrating that the number
of degrees of freedom required to maintain accuracy as k→¥ grows only logarithmically
with respect to k. This approach was improved in [14], where derivation of sharper reg-
ularity estimates regarding the rate of decay of the scattered field away from impedance
discontinuities led to error estimates independent of k.

The plan of this paper is as follows. In §2 we derive regularity results, demonstrating
in particular that g+ut can be written as the known leading order physical optics solu-
tion plus the products of plane waves with unknown functions that are non-oscillatory,
highly peaked near the corners of the polygon and rapidly decaying away from the cor-
ners. In §3, we discuss the boundary integral equation formulation of (1.1)–(1.3). We
describe our approximation space and Galerkin boundary element method in §4, and
present numerical results demonstrating the efficiency of our scheme at high frequencies
in §5. Finally, in §6 we present some conclusions.

2 Regularity results

Our aim in this section is to investigate the regularity of ut, deriving bounds on deriva-
tives which are sufficiently explicit, in particular in their dependence on the wavenum-
ber, so that we can prove the effectiveness of our novel boundary element approximation
space. In this endeavour we will, as part of our arguments, relate all bounds on deriva-
tives to

M :=sup
x∈D
|ut(x)|. (2.1)

We note first of all that g+ut∈H1/2(G)⊂L2(G) so that the impedance boundary condi-
tion (1.2) implies that ¶+

n ut∈L2(G). It follows from standard regularity results for elliptic
problems in Lipschitz domains [15, Theorem 4.24] that g+ut∈H1(G) and thus, from Theo-
rem 6.12 and the accompanying discussion in [15], that ut∈H3/2

loc (D), so that, by standard
Sobolev imbedding theorems [15], ut∈C(D̄) (as a consequence of which M<¥).

From this point on in the paper we restrict attention to the case shown in figure 1
where W is a convex polygon. We write the boundary of the polygon as G = ∪n

j=1Gj,
where Gj, j = 1,.. .,n, are the n sides of the polygon, with j increasing anticlockwise as
shown in figure 1. We denote the corners of the polygon by Pj, j = 1,.. .,n, and we set
Pn+1 = P1, so that, for j = 1,.. .,n, Gj is the line joining Pj with Pj+1. We denote the length
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Figure 1: Notation for scattering by an impedance polygon

of Gj by Lj = |Pj+1−Pj|, the external angle at vertex Pj by Wj∈ (p,2p), and the outwards
unit normal vector to Gj by nj. We let q ∈ [0,2p) denote the angle of the incident plane
wave direction d, as measured anticlockwise from the downward vertical (0,−1). We
also assume from this point on that b takes a constant value on each side of the polygon
Gj; that is, b(x)= b j, x∈Gj
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Taking the limit as x→gd we see that this equation holds also for x∈gd. Now the second
and third integrals in (2.3) are continuously differentiable in Sd∪gd, with gradient whose
magnitude is ≤CM∗ in S3d/4, where M∗= supy∈Sd

|u(y)| and C depends only on N and
d. It follows from (2.3) (with x∈gd) and mapping properties of the single-layer potential
(e.g. [9]) that u ∈ C0,#(gpd), for every p ∈ (0,1), with ‖u‖C0,#(g3d/4) ≤ CM∗, where C here
depends on all of #, N, and d. Again using (2.3) and standard mapping properties of the
single-layer potential [9], we see that u∈C1(Sd∪gd) and that the bound (2.2) holds.

Our first bounds on derivatives of ut will be bounds on ∇ut in D. We note first of
all that it follows from standard interior elliptic regularity estimates [11, Theorem 3.9,
Lemma 4.1] that there exists an absolute constant C >0 such that, for every e>0,

|∇ut(x)|≤Ce−1(1+(ke)2)M (2.4)

if x∈D and the distance of x from G, dist(x,G) > e. Using Lemma 2.1 applied to ut in
domains {x∈D : |x−x∗|< 2c/k} with x∗ ∈ G, c > 0, and dist(x∗,{P1,. . .,Pn}) > 2c/k
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a separation of variables solution in polar coordinates local to the corner Pj (cf. [6, Theo-
rem 2.3]). The bound (2.6) is also consistent with the well-known Malyuzhinets solution
(see [17] and the references therein) for scattering by a wedge with impedance boundary
conditions.

In order to deduce more detailed regularity estimates we combine ideas from [6] (for
the related sound soft problem) and [7,14] (for an impedance half-plane problem). These
more detailed estimates are bounds on derivatives of all orders related to the trace of the
total field g+ut, relevant to the analysis of boundary element methods based on a direct
integral equation formulation obtained from Green’s theorem (see §3 below).

For j = 1,...,n, let Dj denote the half-plane to one side of Gj given by Dj := {x∈R2
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We note that the integral on the right-hand side is well-defined since ut is continuous
and bounded in D̄ and ∇ut satisfies the bounds (2.5) and (2.6), while Gj(x,·) decreases
sufficiently rapidly at infinity [7, (2.10)] so that it is absolutely integrable on ¶Dj. We note
also that, since the left and right hand sides of (2.8) are both continuous in Dj, (2.8) holds
in fact for all x∈Dj.

In the case that Gj is not illuminated by the incident wave (by this we mean the case
that d·nj ≥ 0), it can be shown that (2.8) holds for x ∈ Dj also with us replaced by ui.
(The point is that (see [8, Remark 2.15, Theorem 2.19(ii)]), in the case d·nj≥ 0, ui can be
approximated in Dj by a bounded sequence of solutions of the Helmholtz equation which
satisfy the Sommerfeld radiation condition and which converge uniformly on compact
subsets of Dj to ui, so that (2.8) holds first for each member of this sequence and then, in
the limit, also for ui.) Adding the equations (2.8) satisfied by us and ui, we see that

ut(x)=−
Z

G−j ∪G+
j

Gj(x,y)
�

¶ut

¶n
(y)+ikb jut(y)

�
ds(y), x∈Dj, (2.9)

if Gj is a shadow side, since ut = ui +us and ¶ut

¶n +ikb jut = 0 on Gj. On illuminated sides
(where d·nj < 0), (2.8) still holds for us and we can follow the argument of [7, p.653] to
deduce that

ut(x)=ut
j(x)−

Z
G−j ∪G+

j

Gj(x,y)
�

¶ut

¶n
(y)+ikb jut(y)

�
ds(y), x∈Dj, (2.10)

where ut
j(x) := ui(x)+Rb j (q−q
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and

v−j (s) :=−
Z ¥

Lj

ǩj(k(t−Lj+s))eiktgj(t)
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it is easily seen that A1(s)≤Cm(c+s)−1/2−m, for s≥0, and that A2(s)≤Cms−1/2−m for
s≥ c, while, for 0<s< c,

A2(s) ≤ Cm

Z 0

−c
(s−t)−m|t|a

+
j −1dt

= Cm

�Z c

s
(s+t)−mt

a+
j −1dt+

Z s

0
(s+t)−mt

a+
j −1dt

�
≤ Cm

�Z c

s
t

a+
j −1−mdt+s−m

Z s

0
t

a+
j −1dt

�
≤Cms

a+
j −m.

From these bounds the bound (2.13) on |v+(m)

j | for m∈N follows.

3 Boundary integral equation formulation

Where F is defined by (2.7), applying Green’s representation theorem [15] to us gives

us(x)=
Z

G

�
¶F(x,y)
¶n(y)

g+us(y)−F(x,y)¶+
n us(y)

�
ds(y), x∈D. (3.1)

Applying Green’s second theorem [15] to F(x,·) and ui in W we see that

0=
Z

G

�
¶F(x,y)
¶n(y)

ui(y)−F(x,y)
¶ui

¶n
(y)
�

ds(y), x∈D. (3.2)

Then adding (3.1) and (3.2) and using the boundary condition (1.2), we find that

ut(x)=ui(x)+
Z

G

�
¶F(x,y)
¶n(y)

+ikb(y)F(x,y)
�

g+ut(y)ds(y), x∈D. (3.3)

Applying the trace operator g+ and using the jump relations [15, Theorem 6.11], we ob-
tain a standard boundary integral equation (cf. [9, Section 3.9]) for g+ut, that

1
2

g+ut(x)=ui(x)+
Z

G

�
¶F(x,y)
¶n(y)

+ikb(y)F(x,y)
�

g+ut(y)ds(y), x∈G\{P1,...,Pn}. (3.4)

It is well known [9, 20] that, while (3.4) is uniquely solvable for all but a countable
set of positive wavenumbers k, with the associated linear operator bounded and invert-
ible on Hs(G), for 0≤ s≤ 1, in particular on L2(G), (3.4) is not uniquely solvable for all
wavenumbers. Precisely, if k is such that the Dirichlet problem for the Helmholtz equa-
tion in the interior region W has a non-trivial solution uD (k is a so-called irregular fre-
quency), then (3.4) has infinitely many solutions.To avoid this problem, the standard so-
lution is to use a combined-layer formulation [2, 9], taking a linear combination of (3.4)
with the equation that we get by applying the normal derivative operator ¶+

n to (3.3),
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and f (s)=ui(x(s)). The first step in our numerical method is to separate off the explicitly
known high frequency leading order behaviour which we denote by Y(s). From (2.11)
and Theorem 2.1 it is clear that this leading order behaviour is

Y(s) :=
�

ut
j(x(s)) on illuminated sides

0 on shadow sides.

Introducing the new unknown j=f−Y, and substituting into (4.1), we have

j(s)−2
Z L

0
K(s,t)j(t)dt=2 f (s)−Y(s)+2

Z L

0
K(s,t)Y(t)dt, (4.2)

which we can write in operator form as

(I−K)j= F, (4.3)

whereKv(s):=2
R L

0 K(s,t)v(t)dt, F(s):=2 f (s)−Y(s)+2
R L

0 K(s,t)Y(t)dt, and I is the iden-
tity operator. Thinking of (4.3) as an operator equation on L2(0,L), this is the equation
that we are going to solve for the unknown j by a Galerkin boundary element method.

We now design our Galerkin approximation space VN,n⊂ L2(0,L) in such a way as to
efficiently represent j, based on the representation (2.11) and the bounds in Theorem 2.1
(note that the notations in (2.11) and (4.2) are related by

j(L̃j−1+s)=fj(s)−yj(s), for 0≤ s≤Lj, j=1,...,n). (4.4)

Our estimates in Theorem 2.1 are similar to those for the same scattering problem but
with sound-soft boundary conditions [6, Theorem 3.3, Corollary 3.4], but with different
exponents for 0 < ks≤ 1. Hence our approximation space is similar to (although not the
same as) that defined in [6]. To describe this approximation space we begin by defining a
composite graded mesh on a finite interval [0,A], which comprises a polynomial grading
near 0 and a geometric grading on the rest of the interval [0,A]. This mesh will be a
component in the boundary element mesh that we will use on each side of the polygon.

Definition 4.1. For A>l>0, q≥1, N=2,3,.. ., we define N1:=dNqe and N2673 Tf 8.487 0 Td [(()]TJ/F98 10.9091 Tf 4.68 0 Tdomialto
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on L2(a,b), ‖g‖2,(a,b) :=
nR b

a |g(s)|2ds
o1/2

. For A > l > 0, n ∈N∪{0}, q≥ 1, where yi,

i = 0,1,...,N1+N2, are the points of the mesh in Definition 4.1, let PN,n⊂ L2(0,A) denote
the set of piecewise polynomials

PN,n :={s∈L2(0,A) : s|(yj−1,yj) is a polynomial of degree ≤n for j=1,.. .,N1+N2},

and let PN be the orthogonal projection operator from L2(0,A) to PN,n, so that setting
p = PNg minimises ‖g−p‖2,(0,A) over all p∈PN,n. Our error estimates for our boundary
element method approximation space are based on the following theorem (cf. [6, Theo-
rem 4.2]). We omit the proof which is a minor variant of the proof of [6, Theorem 4.2],
referring the reader to [16] for details. Note that the relevance of this result is that, by
Theorem 2.1, v±j satisfies the conditions of this theorem with a=a±j .

Theorem 4.1. Suppose that g∈C¥(0,¥), k > 0, A > l := 2p/k and a
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(N1,N2) for the meshes LN,Lj,l,qj and LN,Lj,l,qj+1 , respectively. Our approximation space
VN,n is then the linear span of

S
j=1,...,n{VG+

j ,n∪VG−j ,n}. The total number of the degrees of

freedom is MN =(n+1)ån
j=1 N∗j , where N∗j is the sum of the values of N1+N2 (the number

of subintervals) for the meshes LN,Lj,l,qj and LN,Lj,l,qj+1 . Since −1/log(1−1/N1) < N1,
for N1∈N, and 1 < qj < n+3/2, we see that N∗j < (Nqj+1+(Nqj+1)log(Lj/l)/qj+1)+
(Nqj+1+1+(Nqj+1+1)log(Lj/l)/qj+1+1)< (2n+3)N+4+2(N+1)log(Lj/l), so that

MN < (n+1)n
�

(2n+3)N+4+2(N+1)log
�

L̄
l

��
< (n+1)nN

�
2n+5+3log

�
kL̄
2p

��
,

(4.6)
where L̄ :=(L1 . . .Ln)1/n.

It follows from equations (2.11) and (4.4), Theorem 2.1 (applied with c=p), and The-
orem 4.1 that j can be approximated very well by an element of the approximation space
VN,n. Precisely, these equations and theorems imply that, if the conditions of Theorem 2.1
are satisfied, then on each interval (L̃j−1, L̃j) (corresponding to side Gj), there exist ele-
ments s+

j and s−j of PG
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above are irregular frequencies in the sense of §3, i.e. they are values of k for which the
Dirichlet problem for the Helmholtz equation in the interior W has a non-trivial solution
uD and so the integral equation (3.4) has infinitely many solutions. (For this numerical
example these irregular frequencies are k=

√
m2+n2, for m,n∈N, with the corresponding

non-trivial solutions uD given by uD(x) = sinmx1sinnx2.) This lack of uniqueness at a
continuous level does not appear to translate to the discrete level; the Galerkin method
with our approximation space, carefully tailored to j, seems to select the right solution –
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