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Abstract

This thesis is a collection of published and submitted papers. Each paper presents a
chapter of the thesis and in each paper we make progress in the �eld of nondivergence
systems of nonlinear PDEs. The new progress includes proving the existence and
uniqueness of strong solutions to �rst order elliptic systems in Chapter 2, proving the
existence of absolute minimisers to a vectorial 1D minimisation problem in Chapter 3,
proving geometric aspects of p-Harmonic maps in Chapter 4, proving new properties
of classical solutions to the vectorial in�nity Laplacian in Chapter 5.

In Chapter 2 of this thesis we present the joint paper with Katzourakis in which
we extend the results of [43]. In the very recent paper [43], Katzourakis proved
that for any f 2 L2(Rn;RN), the fully nonlinear �rst order system F (�;Du) = f
is well posed in the so-called J.L. Lions space and moreover the unique strong so-
lution u : Rn �! RN to the problem satis�es a quantitative estimate. A central



of a recent paper [41]. In [41], among other interesting results, Katzourakis analysed
the phenomenon of separation of the solutions u :R2 � 
 �! RN , to the 1-Laplace
system

�1u :=
�

Du
Du+ jDuj2[[Du]]? 
 I
�

: D2u = 0;

to phases with qualitatively di�erent behaviour in the case of n = 2 � N . The
solutions of the 1-Laplace system are called the 1-Harmonic mappings. Chapter 5
of this thesis present an extension of Katzourakis’ result mentioned above to higher
dimensions by studying the phase separation of n-dimensional1-Harmonic mappings
in the case N � n � 2.
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Chapter 1

Background and motivations

1.1 Introduction

There is no doubt that PDEs in general, either linear or nonlinear, do not possess
classical solutions, considering that not all derivatives which appear in the equation
may actually exist. The modern approach to this problem consists of looking for
appropriately de�ned generalised solutions for which the hope is that at least existence
can be proved given certain boundary and/or initial conditions. Once existence is
settled, subsequent considerations typically include uniqueness, qualitative properties,
regularity and of course numerics.

This approach to PDE theory has been enormously successful, but unfortunately
so far only equations and systems with fairly special structure have been considered.
A standing idea consist of using integration by parts and duality of functional spaces
in order to interpret rigorously derivatives which do not exist, by \passing them to test
functions". This approach of Sobolev spaces and Schwartz’s Distributions which dates
back to the 1930s is basically restricted to equations which have divergence structure,
like the Euler-Lagrange equation of Calculus of Variations or linear systems with
smooth coe�cients. Let us demonstrate that a solution u 2 C2(�
) of the boundary-
value problem: (

��u = f; in 
;

u = g; on @
;

for Poisson’s equation can be characterised as the minimiser of E[u] = min
!2A

E[!],

where E[!] is the energy functional which we de�ne as follows:

E[!] :=

Z



1

2
jD!j2 � !f dx;

! belonging to the admissible set:

A := f! 2 C2(�
) j ! = g on @
g
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A more recent theory discovered in the 1980s is that of viscosity solutions and builds
on the idea that the maximum principle allows to \pass derivatives to test functions"
without duality. The theory of viscosity solutions applies to fully nonlinear �rst and
second order partial di�erential equations. For such equations, and in particular for
second order ones, solutions are generally non-smooth and standard approaches in
order to de�ne a \weak solution" do not apply:classical, strong almost everywhere,
weak, measure-valued and distributional solutions either do not exist or may not
even be de�ned. The main reason for the latter failure is that, the standard idea of
using integration by parts in order to pass derivatives to smooth test functions by
duality, is not available for non-divergence structure PDE. This idea applies mostly
to scalar solutions of single equations which support the maximum principle (elliptic
or parabolic up to second order), but has been hugely successful because it includes
fully nonlinear equations. For more information about viscosity solutions we refer
to the reference [42]. A relevant notion of solution which bridges the gap between
classical and generalised is that of strong solutions, where it is usually assumed that
all derivatives appearing exist a.e. but in a weak sense.

This thesis is a collection of papers as we will explain in more details in section 1.3
of this chapter by giving a brief outline of the thesis structure. Some of these papers
are joint papers with other researchers at the University of Reading. In these papers
we developed theories in the nonlinear PDEs �eld of study mentioned above.

1.2 Literature review

Due to the vastness of the �eld, it is not easy to include a comprehensive literature
review. A signi�cant amount of the literature is reviewed in the introductions of the
papers that are included in the chapters of this thesis. However, we will try to preview
briey the general outlines of the most important previous studies in this �eld, that
inspired the new progress in this thesis. We will list these previous studies in an order
corresponding to the order of the papers that inspired by them as they appear in the
chapters of this thesis.

1.2.1 Near operators theory

In 1989, S. Campanato [22] has introduced the notion of \near operators" for
studying the existence of solutions of elliptic di�erential equations and systems. In
1994, he has introduced in his work [25] a strong ellipticity condition which is a
condition of nearness between operators. He also has presented a theory of nearness
of mappings say F ;A de�ned on a set 
 � X taking values in a Banach space X. He
has proved that F is injective, surjective or bijective if and only if F is near A with
these properties. The \Campanato" ellipticity condition states that if F ;A : X �! X
are two mappings from the set X 6= ; into the Banach space (X; k � k). If there is a
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constant K 2 (0; 1) such thatF [u]�F [v]�
�
A[u]�A[v]

� � K
A[u]�A[v]


for all u; v 2 X and if A : X �! X is a bijection, it follows that F : X �! X is a
bijection as well.

In 1998, A. Tarsia [61] has studied a generalisation of the near operators theorem.
And in 2000, he has made a developments of the Campanato’s theory of near operators
[62], therein he showed that the theory of near operators is also applicable in more
general situations than those considered up to the time of his contribution. And also
Another contribution of A. Tarsia was [63] in 2008, wherein he has gave a short survey
of the Campanato’s near operators theory and of its applications to fully nonlinear
elliptic equations.

In 2015, N. Katzourakis [37] has introduced a new much weaker ellipticity notion
for F than the Campanato-Tarsia condition and for the �rst time he has considered



Aronsson studied solutions u 2 C2(Rn) of what we now call \Aronsson’s PDE" , in
the case N = 1 and the Lagrangian L is C1:

A1u := D
�



1.2.2.1 Vectorial Absolute Minimisers

In the early 1960s, G.Aronsson has introduced the appropriate minimality notion in
L1 to the scalar case which is the \Absolute minimality" notion explained in (1.2.2).
He considered to be the �rst to note the locality problems associated to supremal
functional. He has proved the equivalence between the so-called Absolute Minimisers
and solutions of the analogue of the Euler-Lagrange equation which is associated to
supremal functional under C2 smoothness hypotheses.

In 2001, Barron-Jensen-Wang [15, 16] have made a notable contribution. They
have studied existence of Absolute Minimisers in the \rank-1" cases. However, their
study was under a certain assumptions. More precisely, in [15] they studied the lower
semicontinuity properties and existence of minimiser of the functional

F (u) = ess sup
x2


f (x; u(x);Du(x))

among other assumptions they assumed that for any (x; �) 2 Rn � RN the func-



Minimality.

In 2017, N. Katzourakis [47] has studied the problem of Absolutely minimising gen-
eralised solutions to the equations of one-dimensional vectorial calculus of variations
in L1, under certain di�erent structural assumptions from that of Barron-Jensen-
Wang. He assumed: strong convexity, smoothness and structural assumptions. By
the structural assumptions we mean that he assumed the Lagrangian can be written
in the following form

L (x; �; P ) := H
�
x; �;

1

2

��P � V (x; �)
��2�:

For more details we refer to the introduction of the paper presented in Chapter 3.

1.2.2.2 Structure of 1-Harmonic maps

By the 1-Harmonic maps we mean the solutions of the 1-Laplacian.

Given a map u : 
 � Rn �! R. The 1-Laplace equation is the PDE

�1u := Du
Du : D2u = 0 in 
;

this equation was �rst derived by G. Aronsson [6{10] as the governing equation for
the so-called absolute minimizer u of the L1 variational problem of minimizing

I[v] := ess sup



jDvj ;

among Lipschitz continuous functions v taking prescribed boundary values on @
.

For a map u : 
 � Rn �! RN , the 1-Laplacian is the system

�1u :=
�

Du
Du+ jDuj2[[Du]]?
 I
�

: D2u = 0 in 
:

The1-Laplacian plays the role of the Euler-Lagrange equation and arises in connex-
ion with variational problems for the supremal functional

E1(u;
) := kDukL1(
); u 2 W 1;1(
;RN):

In 2013, N. Katzourakis [38] constructed new explicit smooth solutions for the case
when the dimensions of the domain and the target of the solution are n = N = 2,
namely smooth 2D 1 -Harmonic maps whose interfaces have triple junctions and
non-smooth corners and are given by the explicit formula

u(x; y) :=

Z x

y

eiK(t)dt: (1.2.7)

Indeed, for K 2 C1(R;R) with kKkL1(R) <
�
2
, (1.2.7) de�nes C2 1-Harmonic map
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whose phases are as shown in Figures 1(a), 1(b) below,when K qualitatively behaves
as shown in the Figures 2(a), 2(b) respectively.

Figure 1(a). Figure 1(b).

Figure 2(a). Figure 2(b).

Also, on the phase 
1 the 1 -Harmonic map (1.2.7) is given by a scalar 1 -Har-
monic function times a constant vector, and on the phase 
2 it is a solution of the
vectorial Eikonal equation. The high complexity of these solutions provides further
understanding of the1-Laplacian and limits what might be true in future regularity
considerations of the interfaces.

In 2014, N. Katzourakis [40] among other interesting things studied the variational
structure of 1 -Harmonic maps. He introduced L1 variational principle, and has
established maximum and minimum principles for the gradient of1-Harmonic maps
of full rank.

In 2014, N. Katzourakis [41] besides other interesting things he studied the struc-
ture of 2D1-Harmonic mappings. He has established a rigidity theorem for rank-one
maps, and analysed a phenomenon of separation of the solutions to phases with qual-
itatively di�erent behaviour.

In 2016, N. Katzourakis and T. Pryer [53] introduced numerical approximations
of 1-Harmonic mappings when the dimension of the domain of the solutions is n
= 2 and the dimension of the target is N = 2, 3. This contribution demonstrate
interesting and unexpected phenomena occurring in L1 and provide insights on the
structure of general solutions and the natural separation to phases they present.

For more details we refer to the introductions of the papers presented in Chapters

7



4 and 5.

1.3 Organisation of thesis

The main aim of this thesis is to advance and develop some new and recent ideas
about the �eld of non-divergence systems of nonlinear PDEs. We have achieved this
goal by submitting, publishing and having preprint papers in di�erent aspects of
the �eld of non-divergence systems of nonlinear PDEs. This thesis is a collection of
these papers, and each paper presents a chapter starting from Chapter 2 as it will be
explained in the outline of the thesis structure below.

Chapter 1 is dedicated for the background and motivations. We start the chapter
with short introduction about the �eld of the study. Then, we give a brief literature
review. And then the organisation of thesis.

In Chapter 2 we present the joint paper with Katzourakis [3]. The estimated
percentage contribution is 50%. This paper has been published online in May 2016
in the journal Advances in Nonlinear Analysis (ANONA). In this paper, we work
on the problem of proving the existence and uniqueness of global strong solutions



Then, for �xed c; b > 0 such that c + b < 1 and
p

2c + b > 1 and a unit vector
� 2 RNwe give a more elaborate example the Lipschitz function F 2 C0

�
R2�2

�
, given

by:
F (x;X) := A : X + � �

�
b
��X��+ c

��A : X
���;

where A is again the Cauchy-Riemann tensor. This example shows that even if we
ignore the rescaling function and normalise it, AK-Condition is still more general
than K-Condition of ellipticity. Then, we introduce and prove a lemma in which we
show that our ellipticity assumption can be seen as a notion of pseudo-monotonicity
coupled by a global Lipschitz continuity property. Finally, we introduce and prove
the main result of this paper which is the theorem of\ Existence-Uniqueness" states
that for n � 3, N � 2 and a Carath�eodory map F : Rn � RN�n �! RN satisfying
the \AK-Condition" with respect to an elliptic reference tensor A.

(1) For any two maps v; u 2



is for each t � 0 the sublevel set�
P 2 RN : L (x; �; P ) � t

	
is a convex set in RN .

2. there exist non-negative constants C1; C2; C3, and 0 < q � r < +1 and a
positive locally bounded function h : R � RN �! [0;+1) such that for all
(x; �; P ) 2 
� RN � RN

C1jP jq � C2 � L (x; �; P ) � h(x; �)jP jr + C3:

Then, for any a�ne map b : R �! RN , there exist a vectorial Absolute Minimiser
u1 2 W 1;1

b (
;RN) of the supremal functional mentioned above.

After that, for the convenience of the reader we recall the Jensen’s inequality for
level-convex functions. And then we recall a lemma of [16] in which they proved the
existence of a vectorial minimise. Finally we give the proof of the main result of the
paper.

In Chapter 4 we present the joint preprint paper with Katzourakis and Ayanbayev
[2]. The estimated percentage contribution is 30%. In this paper we study the rigidity
and atness of the image of certain classes of1-Harmonic and p-Harmonic maps. We
start by giving a brief introduction. And we continue by recalling the L1 variational
principle introduced in [40]. As a generalisation of this theorem we then give our
�rst main result which is the theorem of rigidity and atness of rank-one maps with
tangential Laplacian, which states that if 
 � Rn is an open set and n;N � 1. Let
u 2 C2(
;RN) be a solution to the nonlinear system [[Du]]?�u = 0 in 
, satisfying
that the rank of its gradient matrix is at most one:

rk(Du) � 1 in 
:

Then, its image u(
) is contained in a polygonal line in RN , consisting of an at most
countable union of a�ne straight line segments (possibly with self-intersections).

Then, we give an example shows in general rank-one solutions for the system under
consideration can not have a�ne image but only piecewise a�ne. After the example
we give the theorem of the rigidity of p-Harmonic maps which is a consequence of
the �rst main theorem, this consequence states that if 
 � Rn is an open set and
n;N � 1. Let u 2 C2(
;RN) be a p-Harmonic map in 
 for some p 2 [2;1). Suppose
that the rank of its gradient matrix is at most one:

rk(Du) � 1 in 
:

Then, the same result as in theorem above is true.

In addition, there exists a partition of 
 to at most countably many Borel sets,
where each set of the partition is a non-empty open set with a (perhaps empty)

10



boundary portion, such that, on each of these, u can be represented as

u = � � f:

Here, f is a scalar C2 p-Harmonic function (for the respective p 2 [2;1)), de�ned
on an open neighbourhood of the Borel set, whilst � : R �! RN is a Lipschitz curve
which is twice di�erentiable and with unit speed on the image of f .

At the end of the chapter we list the proofs of the main result and its consequence.

In Chapter 5 we present the single authored preprint paper [1]. in which we study
the phase separation of n�dimensional1-Harmonic mappings. We start the chapter
by giving a brief introduction. Then, we recall the theorem of the structure of 2D 1
-Harmonic maps from [41]. Next to that we introduce the main result of this paper
which generalise the results of [41] to higher dimensions, we refer to it by \ Phase
separation of n-dimensional 1-Harmonic mappings", which states that if 
 � Rn is
a bounded open set, and let u : 
 �! RN , N � n � 2, be an 1-Harmonic map in
C2
�

;RN

�
, that is a solution to the 1-Laplace system

�1u :=
�

Du
Du+ jDuu



then we have that jDuj2 is constant and also rk(Du) � 1. Moreover on

@
1 \ @
n � S;

(when both 1D and nD phases coexist), we have that u :S �! RN is given by
an essentially scalar solution of the Eikonal equation:

u = a+ �f; jDf j2 = C2 > 0; a 2 RN ; � 2 SN�1:

On the other hand, if there exist some r and q such that 2 � r < q � n � 1,
then on S � @
r \ @
q 6= ; (when both rD and qD phases coexist), we have
that rk(Du) � r and we have same result as in (ii) above.

In the preliminaries section, for the convenience of the reader we recall the theorem
of rigidity of rank-one maps, proved in [41], which will be used in the proof of the
main result and we also recall the proposition of Gradient ows for tangentially 1
-Harmonic maps which introduced in [37] and its improved modi�cation lemma in
[40]. We end up the chapter by giving the proof of the main result of the paper.



Chapter 2

On the Well-Posedness of Global
Fully Nonlinear First Order
Elliptic Systems

2.1 Introduction

In this chapter we present the joint paper with Katzourakis [3]. The estimated
percentage contribution is 50%. This paper has been published online in May 2016
in the journal Advances in Nonlinear Analysis (ANONA). In this paper we consider
the problem of existence and uniqueness of global strong solutions u : Rn �! RN to
the fully nonlinear �rst order PDE system

F (�;Du



ator. In the linear case of constant coe�cients, F assumes the form

F (x;X) =
NX

�;�=1

nX
j=1

A��jX�j e
�;

for some linear map A : RNn �! RN . We will follow almost the same conventions as
in [43], for instance we will denote the standard bases of Rn, RN and RN�n by feig,
fe�g and fe� 
 eig respectively. In the linear case, (2.1.1) can be written as

NX
�=1

nX
j=1

A��jDju� = f�; � = 1; :::; N;

and compactly in vector notation as

A : Du = f: (2.1.2)

The appropriate well-known notion of ellipticity in the linear case is that the nullspace
of the linear map A contains no rank-one lines. This requirement can be quanti�ed
as

jA : � 
 aj > 0; when � 6= 0; a 6= 0 (2.1.3)

which says that all rank-one directions � 
 a 2 RNn are transversal to the nullspace.
A prototypical example of such operator A : R2�2 �! R2 is given by

A =

�
1 0 0 1
0 �1 1 0

�
(2.1.4)

and corresponds to the Cauchy-Riemann PDEs. In [43] the system (2.1.1) was proved
to be well-posed by solving (2.1.2) via Fourier transform methods and by utilising the
following ellipticity notion: (2.1.1) is an elliptic system (or F is elliptic) when there
exists a linear map

A : RNn �! RN

which is elliptic in the sense of (2.1.3) and

ess sup
x2Rn

sup
X;Y 2RNn;X 6=Y

���F (x; Y )� F (x;X)
�
� A : (Y �X)

��
jY �Xj

< �(A); (2.1.5)

where
�(A) := min

j�j=jaj=1

��A : � 
 a
�� (2.1.6)

is the \ellipticity constant" of A. This notion was called \K-Condition" in [43]. The
functional space in which well posedness was obtained is the so-called J.L. Lions space

W 1;2�;2(Rn;RN) :=
n
u 2 L2�(Rn;RN) : Du 2 L2(Rn;RNn)

o
: (2.1.7)

14



Here 2� is the conjugate Sobolev exponent

2� =
2n

n � 2
;

where n > 2 (note that \ L 2�
" means \L p for p = 2 � ", not duality) and the natural

norm of the space is

kukW 1;2� ;2(Rn) := kukL2� (Rn) + kDukL2(Rn):

In [43] only global strong a.e. solutions on the whole space were considered and for
dimensionsn � 3 and N � 2, in order to avoid the compatibility di�culties which
arise in the case of the Dirichlet problem for �rst order systems on bounded domains
and because the casen = 2 has been studied quite extensively.

In this paper we follow the method introduced in [43] and we prove well-posedness
of (2.1.1) in the space (2.1.7) for the same dimensionsn � 3 and N � 2. This is the
content of our Theorem 2.4.1, whilst we also obtain an a priori quantitative estimate
in the form of a \comparison principle" for the distance of two solutions in terms of
the distance of the respective right hand sides of (2.1.1).The main advance in this
paper which distinguishes it from the results obtained in [43] is that we introduce a
new notion of ellipticity for (2.1.1) which is strictly weaker than (2.1.5), allowing for
more general nonlinearities F to be considered. Our new hypothesis of ellipticity is
inspired by an other recent work of the second author [45] on the second order case.
We will refer to our condition as the \AK-Condition" (De�nition 2.3.1). In Examples
2.3.2, 2.3.3 we demonstrate that the new condition is genuinely weaker and hence our
results indeed generalise those of [43]. Further, motivated by [45] we also introduce
a related notion which we call pseudo-monotonicity and examine their connection
(Lemma 2.3.4). The idea of the proof of our main result Theorem 2.4.1 is based, as in
[43], on the solvability of the linear system, our ellipticity assumption and on a �xed
point argument in the form of Campanato's near operators, which we recall later for
the convenience of the reader (Theorem 2.2.3).

We conclude this introduction with some comments which contextualise the stand-
ing of the topic and connect to previous contributions by other authors. Linear elliptic
PDE systems of the �rst order are of paramount importance in several branches of
Analysis like for instance in Complex and Harmonic Analysis. Therefore, they have
been extensively studied in several contexts (see e.g. Buchanan-Gilbert [35], Begehr-
Wen [17]), including regularity theory of PDE (see chapter 7 of Morrey's exposition
[58] of the Agmon-Douglis-Nirenberg theory), Di�erential Inclusions and Compen-
sated Compactness theory (Di Perna [32], M•uller [57]), as well as Geometric Analysis
and the theory of di�erential forms (Csat�o-Dacorogna-Kneuss [29]).

However, except for the paper [43] the fully nonlinear system (2.1.1) is much less
studied and understood. By using the Baire category method of the Dacorogna-
Marcellini [31] (which is the analytic counterpart of Gromov's geometric method of
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Convex Integration), it can be shown that the Dirichlet problem(
F (�;Du) = f; in 
;

u = g; on @
;
(2.1.8)

has in�nitely many strong a.e. solutions in W 1;1(
;RN), for 
 � Rn, g a Lipschitz
map and under certain structural coercivity and compatibility assumptions. However,
roughly speaking ellipticity and coercivity of F are mutually exclusive. In particular,
it is well known that the Dirichlet problem (2.1.8) is not well posed when F is either
linear or elliptic.

Further, it is well known that single equations, let alone systems of PDE, in gen-
eral do not have classical solutions. In the scalar case N = 1, the theory of Viscos-
ity Solutions of Crandall-Ishii-Lions (we refer to [42] for a pedagogical introduction
of the topic) furnishes a very successful setting of generalised solutions in which
Hamilton-Jacobi PDE enjoy strong existence-uniqueness theorems. However, there
is no counterpart of this essentially scalar theory for (non-diagonal) systems. The
general approach of this paper is inspired by the classical work of Campanato quoted
earlier and in a nutshell consists of imposing an appropriate condition that allows to
prove well-posedness in the setting of the intermediate theory of strong a.e. solutions.
Notwithstanding, very recently the second author in [48] has proposed a new theory
of generalised solutions in the context of which he has already obtained existence and
uniqueness theorems for second order degenerate elliptic systems. We leave the study
of the present problem in the context of \D-solutions" introduced in [48] for future
work.

2.2 Preliminaries

In this section we collect some results taken from our references which are needed
for the main results of this paper. The �rst one below concerns the existence and



where Aa is the N �N matrix given by

Aa :=
NX

�;�=1

nX
j=1

(A��j aj) e
� 
 e�:

It is easy to exhibit examples of tensors A satisfying (2.2.1). A map A : R2�2 �! R2

satisfying it is

A =

�
� 0 0 �
0 �� � 0

�
;

where �; �; �; � > 0. A higher dimensional example of map A : R4�3 �! R4 is

A =

2664
1 0 0 0 �1 0 0 0 �1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 �1
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 �1 0 1 0 0

3775
which corresponds to the electron equation of Dirac in the case where there is no
external force. For more details we refer to [43].

2.2.1 Theorem [Existence-Uniqueness-Representation, cf.[43]]

Let n � 3, N � 2, A : RNn �! RN a linear map satisfying (2.2.1) and f 2
L2(Rn;RN). Then, the system

A : D898 w 0 0 m 0 14.446 N



determinant on RN�N respectively. Although the formula (2.2.4) involves complex
quantities, u above is a real vectorial solution. Moreover, the symbol \b" stands for
Fourier transform (with the conventions of [34]) and \ _ " stands for its inverse.

Next, we recall the strict ellipticity condition of the second author taken from [43]
in an alternative form which is more convenient for our analysis. We will relax it in
the next section. Let

A : RNn �! RN

be a �xed reference linear map satisfying (2.2.1).

2.2.2 De�nition [K-Condition of ellipticity, cf. [43]]

Let F : Rn � RNn �! RN be a Carath�eodory map. We say that F is elliptic with
respect to A when there exists 0 < � <



in the functional space (2.1.7). Let

A : RNn �! RN

be an elliptic reference linear map satisfying (2.2.1).

2.3.1 De�nition [The AK-Condition of ellipticity]

Let n;N � 2 and
F : Rn � RNn �! RN

a Carath�eodory map. We say that F



linear constant \coe�cients" F which are elliptic with respect to A in the sense of
our AK-Condition De�nition 2.3.1 but which are not elliptic with respect to A in the
sense of De�nition 2.2.2 of [43].

2.3.2 Example

Fix a constant � 2 (0; 1=2] and consider the linear map F given by

F (x;X) :=
1

�
A : X;

where A is the Cauchy-Riemann tensor of (2.1.4). Then, F is elliptic in the sense
of De�nition 2.3.1 with respect to A for �(�) � � and any �;  > 0 with � +  < 1,
but it is not elliptic with respect to A in the sense of De�nition 2.2.2. Indeed for any
X; Y 2 RNn we have:����hF (�; X + Y )� F (�; Y )

i
� A : X

��� =

����� � 1

�
A : (X + Y )� 1

�
A : Y

�
� A : X

����
= 0

�
�
�



� and normalise it to �(�) � 1, De�nition 2.3.1 is still more general than De�nition
2.2.2 with respect to the same �xed reference tensor A.

2.3.3 Example

Fix c; b > 0 such that c+ b < 1 and
p

2c+ b > 1 and a unit vector � 2 RN . Consider
the Lipschitz function F 2 C0

�
R2�2

�
, given by:

F (x;X) := A : X + � �
�
b
��X��+ c

��A : X
���; (2.3.2)

where A is again the Cauchy-Riemann tensor (2.1.4). Then, this F satis�es���hF (�



and this will allow us to conclude that (2.3.3) can not hold for any � < 1 if we impose
 = 0. Indeed, since jY0j2 = 2 + 2�2 and jA : Y0j2 = 4�2, we have�

1� b
�2jY0j2 � c2jA : Y0j2 =

�
1� b

�2
2
�
1 + �2

�
� c2 4�2

= 2
�
1� b

�2
+ 2
��

1� b
�2 � 2c2

�
�2

= 2
�
1� b

�2
+ 2
��

1� b
�2 � 2c2

� (1� b)2

2c2 � (1� b)2

= 0:

We now show that our ellipticity assumption implies a condition of pseudo-monotonicity
coupled by a global Lipschitz continuity property. The statement and the proof are
modelled after a similar result appearing in [45] which however was in the second
order case.

2.3.4 Lemma [AK-Condition of ellipticity as Pseudo-Monoto-

nicity]

De�nition 2.3.1 implies the following statements:

There exist � > � > 0, a linear map A : RNn �! RN satisfying (2.1.3) a positive
function � such that �; 1=� 2 L1(Rn



satisfying (2.1.3). Fix " > 0. Then, for a.e. x 2 RN and all X; Y 2 RNn we have:

jA : Y j2 + �(



2.4 Well-Posedness of Global Fully Nonlinear First

Order Elliptic Systems

In this section we state and prove the main result of this paper which is the following:

2.4.1 Theorem [Existence-Uniqueness]

Assume that n � 3, N � 2 and let F : Rn � RN�n �! RN be a Carath�eodory map,
satisfying De�nition 2.3.1 with respect to a reference tensor A which satis�es (2.2.1).

(1) For any two maps v; u 2 W 1;2�;2(Rn;RN) (see (2.1.7)), we have the estimate

kv � ukW 1;2�;2(Rn) � C
F (�; Dv)� F (�; Du)


L2(Rn)

(2.4.1)

for some C > 0 depending only on F . Hence, the PDE system F (�;Du) = f has at
most one solution.

(2) Suppose further that F (x; 0) = 0 for a.e. x 2 Rn. Then for any f 2 L2(Rn;RN),
the system

F (�;Du) = f; a.e. on Rn;

has a unique solution u in the space W 1;2�;2(Rn;RN) which also satis�es the estimate

kukW 1;2�;2(Rn) � CkfkL2(Rn) (2.4.2)

for some C > 0 depending only on F .

2.4.2 Proof of Theorem 2.4.1.

(1) Let � and A be as in De�nition 2.3.1 and �x u; v 2 W 1;2�;2(Rn;RN). Since A
satis�es (2.2.1), by Plancherel’s theorem (see e.g. [34]) we have:

1

�(A)

A :
�
Dv �Du

�
L2(

�
D



where we symbolised the identity map by \Id", which means Id(x) := x. Further, by
De�nition 2.3.1 also we have�(�)

�
F (�;Du)� F (�;Dv)

�
� A :

�
Du�Dv

�
L2(Rn)

� ��(A)
Du�Dv


L2(Rn)

+ 
A :

�
Du�Dv

�
L2(Rn)

Using the estimate (2.4.3) above this gives:�(�)
�
F (�;Du)� F (�; Dv)

�
� A :

�
Du�Dv

�
L2(Rn)

� �
A :

�
Du�Dv

�
L2(Rn)

+ 
A :

�
Du�Dv

�
L2(Rn)

(2.4.4)

�
�
� + 

�A :
�
Du�Dv

�
L2(Rn)

and hence�
� + 

�A :
�
Du�Dv

�
L2(Rn)

�
A :

�
Du�Dv

�
� �(�)

�
F (�;Du)� F (�;Dv)

�
L2(Rn)

�
A :

�
Du�Dv

�
L2(Rn)

�
�(�)

�
F (�;Du)� F (�;Dv)

�
L2(Rn)

which implies the following estimate:�(�)
�
F (�;Du)� F (�;Dv)

�
L2(Rn)

�
�
1� (� + )

�A :
�
Du�Dv

�
]

L2(Rn)

�
�
1� (� + )

�
�(A)

Du�Dv

L2(Rn)

Since � +  < 1, we have the estimate:

k�(�)kL1(Rn)�
1� (� + )

�
�(A)

F (�;Du)� F (�;Dv)

L2(Rn)

�
Du�Dv


L2(Rn)

: (2.4.5)

By (2.4.5), and the fact that n





Chapter 3

Existence of 1D Vectorial Absolute
Minimisers in L1 under Minimal
Assumptions

3.1 Introduction

In this chapter we present the joint paper with Katzourakis [4]. The estimated per-
centage contribution is 50%. This paper has been published in December 2016 in
Proceedings of the American Mathematical Society (AMS). The main goal of this
paper is to prove the existence of a Vectorial Absolute Minimiser to the supremal
functional

E1(u;
0) := ess sup
x2
0

L (x; u(x);Du(x)) ; u 2 W 1;1
loc (
;RN); 
0 b 
; (3.1.1)

applied to maps u : 
 � R �! RN , N 2 N, where 
 is an open interval and
L 2 C(
�RN�RN) is a non-negative continuous function which we call Lagrangian
and whose arguments will be denoted by (x; �; P ). By Absolute Minimiser we mean
a map u 2 W 1;1

loc (
;RN) such that

E1(u;
0) � E1(u+ �;
0); (3.1.2)

for all 
0 b 
 and all � 2 W 1;1
0 (
0;RN). This is the appropriate minimality notion

for supremal functionals of the form (3.1.1); requiring at the outset minimality on all
subdomains is necessary because of the lack of additivity in the domain argument.
The study of (3.1.1) was pioneered by Aronsson in the 1960s [6{10] who considered
the case N = 1. Since then, the (higher dimensional) scalar case of u : 
 � Rn ! R
has developed massively and there is a vast literature on the topic (see for instance
the lecture notes [5, 42]). In the case the Lagrangian is C1, of particular interest has
been the study of the (single) equation associated to (3.1.1), which is the equivalent of
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the Euler-Lagrange equation for supremal functionals and is known as the \Aronsson
equation":

A1u := D
�
L (�; u;Du)

�
LP (�; u;Du) = 0: (3.1.3)

In (3.1.3) above, the subscript denotes the gradient of L (x; �; P ) with respect to
P and, as it is customary, the equation is written for smooth solutions. Herein we
are interested in the vectorial case N � 2 but in one spatial dimension. Unlike the
scalar case, the literature for N � 2 is much more sparse and starts much more re-
cently. Perhaps the �rst most important contributions were by Barron-Jensen-Wang
[15, 16] who among other deep results proved the existence of Absolute Minimisers
for (3.1.1) under certain assumptions on L which we recall later. However, their
contributions were at the level of the functional and the appropriate (non-obvious)
vectorial analogue of the Aronsson equation was not known at the time. The sys-
tematic study of the vectorial case of (3.1.1) (actually in the general case of maps
u : 
 � Rn �! RN) together with its associated system of equations begun in the
early 2010s by the second author in a series of papers, see [36{41, 44, 46{49] (and
also the joint contributions with Croce, Pisante and Pryer [28, 53, 54]). The ODE
system associated to (3.1.1) for smooth maps u : 
 � R �! RN turns out to be

F1
�
�; u;Du;D2u

�
= 0; on 
; (3.1.4)

where

F1(x; �; P;X) :=
h
LP (x; �; P )
LP (x; �; P )

+ L (x; �; P )[LP (x; �; P )]?LPP (x; �; P )
i
X

+
�

L�(x; �; P ) � P + Lx(x; �; P )
�

LP (x; �; P )

+ L (x; �; P )
�
LP (x; �; P )

�?�
LP�(x; �; P )P

+ LPx(x; �; P ) � L�(x; �; P )
�
:

(3.1.5)

Quite unexpectedly, in the case N � 2 the Lagrangian needs to be C2 for the equa-
tion to make sense, whilst the coe�cients of the full system are discontinuous ; for
more details we refer to the papers cited above. In (3.1.5) the notation of subscripts
symbolises derivatives with respect to the respective variables and

�
LP (x; �; P )

�? is
the orthogonal projection to the hyperplane normal to LP (x; �; P ) 2 RN :�

LP (x; �; P )
�?

:= I� sgn
�
LP (x; �; P )

�

 sgn

�
LP (x; �; P )

�
: (3.1.6)

The system (3.1.4) reduces to the equation (3.1.3) when N = 1. In the paper [47]
the existence of an absolutely minimising generalised solution to (3.1.4) was proved,
together with extra partial regularity and approximation properties. Since (3.1.4) is a
quasilinear non-divergence degenerate system with discontinuous coe�cients, a notion
of appropriately de�ned \weak solution" is necessary because in general solutions are
non-smooth. To this end, the general new approach of D-solutions which has recently
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been proposed in [48] has proven to be the appropriate setting for vectorial Calculus



Here V : 
�RN �! RN is a time-dependent vector �eld describing the law of motion
of a body moving along the orbit described by u : 
 � R �! RN (e.g. Newtonian
forces, Galerkin approximation of the Euler equations, etc), k : 
 � R �! RM is
some partial \measurements" in continuous time along the orbit and K : RN �! RM

is a submersion which corresponds to some component of the orbit that is observed.
We interpret the problem as that u should satisfy the law of motion and also be
compatible with the measurements along the orbit. Then minimisation of (3.1.1)
with L as given by (3.1.7) leads to a uniformly optimal approximate solution without



In the setting of theorem 3.1.1 and under the same hypotheses, for a �xed a�ne
map b : R �! RN , set

Cm := inf
n

Em (u; 
) : u 2 W 1;qm
b (
 ; RN )

o
;

C1 := inf
n

E1 (u; 
) : u 2 W 1;1
b (
 ; RN )

o
:

whereE1 is as in (3.1.1) and

Em (u; 
) :=
Z



L

�
x; u(x); Du(x)

� m
dx: (3.2.1)

Then, there exist u1 2 W 1;1
b (
 ; RN ) which is a (mere) minimiser of (3.1.1) over

W 1;1
b (
 ; RN ) and a sequence of approximate minimisersf umg1

m=1 of (3.2.1) in the
spacesW 1;qm

b (
 ; RN ) such that, for any s � 1,

um �� * u 1 , weakly asm ! 1 in W 1;s(
 ; RN )

along a subsequence. Moreover,

E1 (u1 ; 
) = C1 = lim
m!1

(Cm )
1
m : (3.2.2)

By approximate minimiser we mean thatum satis�es
�
�Em (um ; 
) � Cm

�
� < 2� m2

; (3.2.3)

Finally, for any A � 
 measurable of positive measure the following lower semiconti-
nuity inequality holds

E1 (u1 ; A) � lim inf
m!1

Em (um ; A)
1
m : (3.2.4)

The idea of the proof of (3.2.3) is based on the use of Young measures in order to
bypass the lack of convexity for the approximatingLm minimisation problems (recall
that L (x; �; �) is only assumed to be level-convex); without weak lower-semicontinuity
of Em , the relevant in�ma of the approximating functionals may not be realised. For
details we refer to [16] (this method of [16] has most recently been applied to higher
order L1 problems, see [54]). We also note that (3.2.4) has been established in p.
264 of [16] in slightly di�erent guises, whilst the scaling of the functionalsEm is also
slightly di�erent therein. However, it is completely trivial for the reader to check that
their proofs clearly establish our Lemma 3.2.1.

3.2.2 Proof of Theorem 3.1.1.
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Our goal now is to prove that the candidate u1 of Lemma 3.2.1 above is actually an
Absolute Minimiser of (3.1.1), which means we need to prove u1 satis�es (3.1.2).

The method we utilise follows similar lines to those of [47], although technically
has been slightly simpli�ed. The main di�erence is that due to the weaker assump-
tions than those of [47], we invoke the general Jensen’s inequality for level-convex
functions Theorem 3.1.2. In [47] the Lagrangian was assumed to be radial in the
third argument, a condition necessary and su�cient for the symmetry of the coef-
�cient matrix multiplying the second derivatives in (3.1.4); this special structure of
L led to some technical complications. Also, herein we have reduced the number
of auxiliary parameters in the energy comparison map (de�ned below) by invoking a
diagonal argument.

Let us �x 
0 b 
. Since 
0 is a countable disjoint union of open intervals, then
there is no loss of generality in assuming that 
0 itself is an open interval, and by
simple rescaling argument, it su�ces to assume that 
0 = (0; 1) b R. Let � 2
W 1;1

0 ((0; 1);RN) be an arbitrary variation and set  1 := u1+�. In order to conclude,
it su�ces to establish

E1
�
u1; (0; 1)

�
� E1

�
 1; (0; 1)

�
:

Obviously, u1(0) =  1(0) and u1(1) =  1(1). We de�ne the energy comparison
function  m;�, for any �xed 0 < � < 1=3 as

 m;�(x) :=

8>>>>><>>>>>:

�
� � x
�

�
um(0) +

�x
�

�
 1(�); x 2 (0; �];

 1(x); x 2 (�; 1� �); 1
�

�



because  m;� �!  1;� in L1
�
(0; 1);RN

�
and for a.e. x 2 (0; 1) we have���D m;�(x)�D 1;�(x)

��� = �(0;�)
ju1(0)� um(0)j

�
+ �(1��;1)

ju1(1)� um(1)j
�

�
�

1

�
+

1

�

�
kum � u1kL1(
)

= o(1);

as m!1 along a subsequence. Now, recall that  m;� = um at the endpoints f0; 1g.
Let us also remind to the reader that after the rescaling simpli�cation, (0; 1) is a
subinterval of 
 � R whilst (3.2.3) holds only for the whole of 
. Since um is an
approximate minimiser of (3.2.1) over W 1;m

b (
;RN) for each m 2 N, by utilising the
approximate minimality of um (given by (3.2.3)), the additivity of Em with respect
to its second argument, we obtain the estimate

Em
�
um; (0; 1)

�
� Em

�
 m;�; (0; 1)

�
+ 2�m

2

:

Hence, by H�older inequality

Em
�
um; (0; 1)

� 1
m � Em

�
 m;�; (0; 1)

� 1
m + 2�m

� E1
�
 m;�; (0; 1)

�
+ 2�m:

(3.2.6)

On the other hand, we have

E1
�
 m;�; (0; 1)

�
= max

n
E1
�
 m;�; (0; �)

�
;

E1
�
 m;�; (�; 1� �)

�
;

E1
�
 m;�; (1� �; 1)

�o
and since  m;� =  1 on (�; 1� �), we have

E1
�
 m;�; (0; 1)

�
� max

�
E1
�
 m;�; (0; �)

�
; E1

�
 1; (0; 1)

�
;

E1
�
 m;�; (1� �; 1)

��
:

(3.2.7)

Combining (3.2.5)-(3.2.7) and (3.2.4), we get



Let us now denote the di�erence quotient of a function v : R �! RN as D1;tv(x) :=
1
t
[v(x+ t)� v(x)]. Then, we may write

D 1;�(x) = D1;� 1(0), x 2 (0; �);

D 1;�(x) = D1;�� 1(1), x 2 (1� �; 1),

Note now that8><>:
E1
�
 1;�; (0; �)

�
= max

0�x��
L
�
x;  1;�(x);D1;� 1(0)

�
;

E1



Indeed, for any Lipschitz functionu, we have

D1;t u(y) =
u(y + t) � u(y)

t
=

Z 1

0
Du(y + �t ) d�; (3.2.14)

when y; y + t 2 A" (x); t 6= 0. Further, for any x 2 
 the function L (x; u(x); �)
is level-convex and the Lebesgue measure on [0; 1] is a probability measure, thus
Jensen's inequality for level-convex functions (see e.g. [15, 16]) yields

L
�

x; u(x); D1;t u(y)
�

= L
�

x; u(x);
Z 1

0
Du(y + �t ) d�

�

� ess sup
0� � � 1

L
�

x; u(x); Du(y + �t )
�

;

when y 2 A" (x), 0 < x <



for any �xed u 2 W 1;1(
;RN) and x 2 [0; 1]. Now, since��D1;tu(x)
�� � kDukL1(
); x 2 (0; 1); t 6= 0;

for any �nite set of points x 2 (0; 1), there is a common in�nitesimal sequence
(ti(x))1i=1 such that

the limit vectors lim
i!1

D1;ti(x)u(x) exists in RN : (3.2.16)

Utilising the continuity of L together with (3.2.15)-(3.2.16) we obtain

E1
�
u; (0; 1)

�
� lim sup

i!1
L
�
x; u(x);D1;ti(x)u(x)

�
= L

�
x; u(x); lim

i!1
D1;ti(x)u(x)

�
:

(3.2.17)

Now we apply (3.2.17) to u =  1 and x 2 f0; 1g to deduce the existence of a
sequence (�i)

1
i=1 along which

the limit vectors lim
i!1

D1;�i 1(0); lim
i!1

D1;��i 1(1) exist in RN (3.2.18)

and also

E1
�
 1; (0; 1)

�
� max

�
L
�

0;  1(0); lim
i!1

D1;�i 1(0)
�
;

L
�

1;  1(1); lim
i!1

D1;��i 1(1)
��

:

(3.2.19)

By recalling (3.2.9), (3.2.11) and (3.2.18), for � = �i we obtain

lim
i!1

E1
�
 1;�i ; (0; �i)

�
= lim

i!1
max
[0;�i]

L
�
�;  1;�i ;D1;�i 1(0)

�
= L

�
0;  1(0); lim

i!1
D1;�i 1(0)

�
;

(3.2.20)

and also

lim
i!1

E1
�
 1;�i ; (1� �i; 1)

�
= lim

i!1
max

[1��i;1]
L
�
�;  1;�i ;D1;��i 1(1)

�
= L

�
1;  1(1); lim

i!1
D1;��i 1(1)

�
:

(3.2.21)

By putting together (3.2.19)-(3.2.21), (3.2.10) ensues and we conclude the proof.
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Chapter 4

Rigidity and atness of the image
of certain classes of 1-Harmonic
and p-Harmonic maps

4.1 Introduction

In this chapter we present the joint preprint paper with Katzourakis and Ayanbayev
[2]. The estimated percentage contribution is 30%. Suppose that n;N are integers
and 
 an open subset of Rn. In this paper we study geometric aspects of the image
u(
) � RN of certain classes of C2 vectorial solutions u : Rn � 
 �! RN to the
following nonlinear degenerate elliptic PDE system:

[[Du]]?�u = 0 in 
: (4.1.1)

Here, for the map u with components (u1; :::; uN)> the notation Du symbolises the
gradient matrix

Du(x) =
�
Diu�(x)

��=1:::N

i=1:::n
2 RN�n ; Di � @=@xi;

�u stands for the Laplacian

�u(x) =
nX
i=1

D2
iiu(x) 2 RN

and for any X 2 RN�n, [[X]]? denotes the orthogonal projection on the orthogonal
complement of the range of linear map X : Rn �! RN :

[[X]]? := ProjR(X)? : (4.1.2)
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Our general notation will be either self-explanatory, or otherwise standard as e.g. in
[30, 33]. Note that, since the rank is a discontinuous function, the map [[ � ]]? is discon-
tinuous on RN�n; therefore, the PDE system (4.1.1) has discontinuous coe�cients.
The geometric meaning of (4.1.1) is that the Laplacian vector �eld �u is tangential
to the image u(
) and hence (4.1.1) is equivalent to the next statement: there exists
a vector �eld

A : Rn � 
 �! Rn

such that
�u = DuA in 
:

Our interest in (4.1.1) stems from the fact that it is a constituent component of the
p-Laplace PDE system for all p 2 [2;1]. Further, contrary perhaps to appearances,
(4.1.1) is in itself a variational PDE system but in a non-obvious way. Deferring tem-
porarily the speci�cs of how exactly (4.1.1) arises and what is the variational principle
associated with it, let us recall that, for p 2 [2;1), the celebrated p-Laplacian is the
divergence system

�pu := Div
�
jDujp�2Du

�
= 0 in 
 (4.1.3)

and comprises the Euler-Lagrange equation which describes extrema of the model
p-Dirichlet integral functional

Ep(u) :=

Z



jDujp; u 2 W 1;p(
;RN); (4.1.4)

in conventional vectorial Calculus of Variations. Above and subsequently, for any
X 2 RN�n, the notation jXj symbolises its Euclidean (Frobenius) norm:

jXj =

 
NX
�=1

nX
i=1

(X�i)
2

!1=2

:

The pair (4.1.3)-(4.1.4) is of paramount importance in applications and has been
studied exhaustively. The extremal case of p ! 1 in (4.1.3)-(4.1.4) is much more
modern and intriguing. It turns out that one then obtains the following nondivergence
PDE system

�1u :=
�

Du
Du+ jDuj2[[Du]]?
 I
�

: D2u = 0 in 
; (4.1.5)

which is known as the 1-Laplacian. In index from, (4.1.5) reads

NX
�=1

nX
i;j=1

�
Diu� Dju� + jDuj2[[Du]]?�� �ij

�
D2
iju� = 0; � = 1; :::; N:

The system (4.1.5) plays the role of the Euler-Lagrange equation and arises in con-
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nexion with variational problems for the supremal functional

E1(u;O) := kDukL1(O); u 2 W 1;1(
;RN); O b 
: (4.1.6)

The scalar case of N = 1 in (4.1.5)-(4.1.6) was pioneered by G. Aronsson in the 1960s
[6{10] who initiated the �eld of Calculus of Variations in L1, namely the study of
supremal functionals and of their associated equations describing critical points. Since
then, the �eld has developed tremendously and there is an extensive relevant literature



requiring to vanish on @O), namely those for which � = [[Du]]?� in O, we have

kDukLp(O) � kDu+ D�kLp(O):

3. The same statement as in item (2) holds, but only for some p 2 [2;1].

If in addition p <1 in (2)-(3), then we may further restrict the class of normal vector
�elds to those satisfying �j@O = 0.

Figure 1. Illustration of the variational principle characterising (4.1.1).

In the paper [40], it was also shown that in the conformal class, (4.1.1) expresses the
vanishing of the mean curvature vector of u(
).

The e�ect of (4.1.1) to the atness of the image can be easily seen in the case of
n = 1 � N as follows: since

[[u0]]?u00 = 0 in 
 � R

and in one dimension we have

[[u0]]? =

8<: I� u0 
 u0

ju0j2
; on fu0 6= 0g;

I; on fu0 = 0g;

we therefore infer that u00 = fu0 on the open set fu0 6= 0g � R for some function f ,
readily yielding after an integration that u(
) is necessarily contained in a piecewise
polygonal line of RN . As a generalisation of this fact, our �rst main result herein is
the following:

4.1.2 Theorem [Rigidity and atness of rank-one maps with
tangential Laplacian]

Let 
 � Rn be an open set and n;N � 1. Let u 2 C2(
;RN) be a solution to the
nonlinear system (4.1.1) in 
, satisfying that the rank of its gradient matrix is at
most one:

rk(Du) � 1 in 
:

Then, its image u(
) is contained in a polygonal line in RN , consisting of an at most
countable union of a�ne straight line segments (possibly with self-intersections).

40



Let us note that the rank-one assumption for Du is equivalent to the existence of
two vector �elds � : Rn � 
 �! RN and a : Rn � 
 �! Rn such that Du = � 
 a in

.

Example 4.1.3 below shows that Theorem 4.1.2 is optimal and in general rank-one
solutions to the system (4.1.1) can not have a�ne image but only piecewise a�ne.

4.1.3 Example

Consider the C2 rank-one map u : R2 �! R2 given by

u(x; y) =

�
(�x4; x4); x � 0; y 2 R;
(+x4; x4); x > 0; y 2 R:

Then, u = � � f with � : R �! R2 given by �(t) = (t; jtj) and f : R2 �! R given
by f(x; y) = sgn(x)x4



In addition, there exists a partition of 
 to at most countably many Borel sets,
where each set of the partition is a non-empty open set with a (perhaps empty)
boundary portion, such that, on each of these, u can be represented as

u = � � f:

Here, f is a scalar C2 p-Harmonic function (for the respective p 2 [2;1)), de�ned
on an open neighbourhood of the Borel set, whilst � : R �! RN is a Lipschitz curve
which is twice di�erentiable and with unit speed on the image of f .

In this paper we try to keep the exposition as simple as possible and therefore we
refrain from discussing generalised solutions to (4.1.1) and (4.1.5) (or (4.1.3)). We
con�ne ourselves to merely mentioning that in the scalar case,1-Harmonic functions
are understood in the viscosity sense of Crandall-Ishii-Lions (see e.g. [5, 42]), whilst
in the vectorial case a new candidate theory for systems has been proposed in [48]
which has already borne signi�cant fruit in [13, 28, 46{48, 51, 53{55].

We now expound on how exactly the nonlinear system (4.1.1) arises from (4.1.3)
and (4.1.5). By expanding the derivatives in (4.1.3) and normalising, we arrive at

Du
Du : D2u +
jDuj2

p� 2
�u = 0: (4.1.7)

For any X 2 RN�n, let [[X]]k denote the orthogonal projection on the range of the
linear map X : Rn �! RN :

[[X]]k := ProjR(X): (4.1.8)

Since the identity of RN splits as I = [[Du]]k + [[Du]]?, by expanding �u with respect
to these projections,

Du
Du : D2u +
jDuj2

p� 2
[[Du]]k�u = �jDuj

2

p� 2
[[Du]]?�u:

The mutual perpendicularity of the vector �elds of the left and right hand side leads
via a renormalisation argument (see e.g. [37, 40, 41]) to the equivalence of the p-
Laplacian with the pair of systems

Du
Du : D2u +
jDuj2

p� 2
[[Du]]k�u = 0 ; jDuj2[[Du]]?�u = 0: (4.1.9)

The 1-Laplacian corresponds to the limiting case of (4.1.9) as p ! 1, which takes
the form

Du
Du : D2u = 0 ; jDuj2[[Du]]?�u = 0: (4.1.10)

Hence, the 1-Laplacian (4.1.5) actually consists of the two independent systems
in (4.1.10) above. The second system in (4.1.9)-(4.1.10) is, at least on fDu 6= 0g,
equivalent to our PDE system (4.1.1). Note that in the scalar case of N = 1 as well
as in the case of submersion solutions (for N � n), the second system trivialises.
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We conclude the introduction with a geometric interpretation of the nonlinear
system (4.1.1), which can be expressed in a more geometric language as follows:1

Suppose that u(
) is a C2 manifold and let A(u) denote its second fundamental



each Bi the map u has the form

u = �i � fi; on Bi: (4.2.1)

Moreover, j� 0ij � 1 on the interval fi(Bi), �
0
i � 0 on Rnfi(Bi) and � 00i exists everywhere

on fi(Bi), interpreted as 1-sided derivative on @fi(Bi) (if fi(Bi) is not open). Also,(
Du = (� 0i � fi)
Dfi ; on Bi;

D2u = (� 00i � fi)
Dfi 
Dfi + (� 0i � fi)
D2fi ; on Bi:
(4.2.2)

In addition, the local functions (fi)
1
1 extend to a global function f 2 C2(
) with the

same properties as above if 
 is contractible (namely, homotopically equivalent to a
point).

We may now prove our �rst main result.

4.2.2 Proof of Theorem 4.1.2.

Suppose that u : Rn � 
 �! RN is a solution to the nonlinear system (4.1.1) in
C2(
;RN) which in addition satis�es that rk(Du) � 1 in 
. Since fDu = 0g is
closed, necessarily its complement in 
 which is frk(Du) = 1g is open.

By invoking Theorem 4.2.1, we have that there exists a partition of the open subset
frk(Du) = 1g to countably many Borel sets (Bi)

1
1 with respective functions (fi)

1
1 and

curves (�i)
1
1 as in the statement such that (4.2.1)-(4.2.2) hold true and in addition

Dfi 6= 0 on Bi; i 2 N:

Consequently, on each Bi we have

[[Du]]? = [[(� 0i � fi)
Dfi]]
? = I � (� 0i � fi)
 (� 0i � fi)

j� 0i � fij2
;

�u = (� 00i � fi)jDfij2 + (� 0i � fi)�fi:

Hence, (4.1.1) becomes�
I � (� 0i � fi)
 (� 0i � fi)

j� 0i � fij2

��
(� 00i � fi)j050� 0i

� ffffjfR

each
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(5.1.1) is called the\1-Laplacian" and it arises as a sort of Euler-Lagrange PDE of
vectorial variational problems in L1 for the supremal functional

E1(u;O) := kH(Du)kL1(O); u 2 W 1;1
loc (
;RN); O b 
; (5.1.4)



which is the equivalent of the Euler-Lagrange equation for supremal functionals
E1(u;
) = ess sup

x2
�Rn
L (x; u(x);Du(x)). In Aronsson’s PDE above, the subscript

denotes the gradient of L (x; �; P ) with respect to P and, as it is customary, the
equation is written for smooth solutions.

Today it is being studied in the context of Viscosity Solutions (see for exam-
ple Crandall [5], Barron-Evans-Jensen [14] and Katzourakis [42]). In particular, for
N = 1 and H(p) := 1

2
jP j2, there is a triple equivalence among viscosity solutions u 2

C0;1(Rn) of the1-Laplacian (5.1.7), absolute minimizers of E1(u;
) = 1
2
kDuk2

L1(
)

and the so-called optimal Lipschitz extensions, namely functions u 2 C0;1(Rn) satis-
fying Lip(u;
) = Lip(u; @
) for all 
 b Rn, where Lip is the Lipschitz functional

Lip(u;K) = sup
x;y2K;x6=y

ju(x)� u(y)j
dist(x; y)

; K � Rn:

The vectorial case N � 2 �rst arose in the early 2010s in the work of Katzourakis
[37]. Due to both the mathematical signi�cance as well as the importance for ap-
plications particularly in Data Assimilation, the area is developing very rapidly (see
[4, 13, 28, 38{41, 44, 46{55]).

In a joint work with Katzourakis and Ayanbayev [2], among other results, we
have proved that the image u(
) of a solution u 2 C2(
;RN) to the nonlinear system
(5.1.1) satisfying that the rank of its gradient matrix is at most one, rk(Du) � 1 in 
,
is contained in a polygonal line in RN , consisting of an at most countable union of
a�ne straight line segments (possibly with self-intersections). Hence the component
[[Du]]?�u of �1 forces atness of the image of solutions.

Interestingly, even when the operator �1 is applied to C1 maps, which may even
be solutions, (5.1.1) may have discontinuous coe�cients. This further di�culty of the
vectorial case is not present in the scalar case. As an example consider

u(x; y) := eix � eiy; u : R2 �! R2: (5.1.9)

Katzourakis has showed in [37] that even though (5.1.9) is a smooth solution of the
1-Laplacian near the origin, still the coe�cient jDuj2[[Du]]? of (5.1.1) is discontinuous.
This is because when the dimension of the image changes, the projection [[Du]]?

\jumps". More precisely, for (5.1.9) the domain splits to three components according
to the rk(Du), the \2D phase 
2", whereon u is essentially 2D, the\1D phase 
1",
whereon u is essentially 1D



and corners and are given by the explicit formula

u(x; y) :=

Z x

y

eiK(t)dt: (5.1.10)

Indeed, for K 2 C1(R;R) with kKkL1(R) <
�
2
, (5.1.10) de�nes C2 1-Harmonic map

whose phases are as shown in Figures 1(a), 1(b) below, when K qualitatively behaves
as shown in the Figures 2(a), 2(b) respectively. Also, on the phase 
1 the1-Harmonic
map (5.1.10) is given by a scalar 1-Harmonic function times a constant vector, and
on the phase 
2 it is a solution of the vectorial Eikonal equation.

Figure 1(a). Figure 1(b).

Figure 2(a). Figure 2(b).

One of the interesting results in [41] was that this phase separation is a general
phenomena for smooth 2D1-Harmonic maps. Therein the author proves that on each
phase the dimension of the tangent space is constant and these phases are separated by
interfaces whereon [[Du]]? becomes discontinuous. Accordingly the author established
the next result:

5.1.1 Theorem [Structure of 2D 1-Harmonic maps, cf. [41]]

Let u : R2 � 
 �! RN be an 1-Harmonic map in C2
�

;RN

�
, that is a solution

to (5.1.1). Let also N � 2. Then, there exist disjoint open sets 
1, 
2 � 
, and a
closed nowhere dense set S such that 
 = 
1

S
S
S


2 and:
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(i) On 
2 we have rk(Du) = 2 , and the map u : 
2 �! RN is an immersion and
solution of the Eikonal equation:

jDuj2 = C2 > 0: (5.1.11)

The constant C may vary on di�erent connected components of 
2.

(ii) On 
1 we have rk(Du) = 1 and the map u :
1 �! RN is given by an essentially
scalar 1-Harmonic function f :
1 �! R:

u = a+ �f; �1f = 0; a 2 RN ; � 2 SN�1: (5.1.12)

The vectors a; � may vary on di�erent connected components of 
1.

(iii) On S, jDuj2 is constant and also rk(Du) = 1. Moreover if S = @
1 \ @
2 (that
is if both the 1D and 2D phases coexist) then u : S �! RN is given by an
essentially scalar solution of the Eikonal equation:

u = a+ �f; jDf j2 = C2 > 0; a 2 RN ; � 2 SN�1: (5.1.13)

The main result of this paper is to generalise these results to higher dimension
N � n � 2. The principle result in this paper in the following extension of theorem
5.1.1:

5.1.2 Theorem[ Phase separation of n-dimensional 1 -Har-
monic mappings]

Let 
 � Rn be a bounded open set, and let u : 
 �! RN , N � n � 2, be an
1-Harmonic map in C2

�

;RN

�
, that is a solution to the 1-Laplace system (5.1.1).

Then, there exist disjoint open sets
�

r

�n
r=1
� 
, and a closed nowhere dense set S

such that 
 = S
S� nS

i=1


i

�
such that:

(i) On 
n we have rk(Du) � n and the map u : 
n �! RN is an immersion and
solution of the Eikonal equation:

jDuj2 = C2 > 0: (5.1.14)

The constant C may vary on di�erent connected components of 
n.

(ii) On 
r we have rk(Du) � r, where r is integer in f2; 3; 4; :::; (n � 1)g, and
jDu((t))j is constant along trajectories of the parametric gradient ow of u((t;
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x; �)) (
_(t; x; �) = �>Du

�
(t; x; �)

�
; t 2 (�"; 0)

S
(0; ");

(0; x; �) = x;
(5.1.15)

where � 2 SN�1, and � =2 N
�
Du
�
(t; x; �)

�>�
.

(iii) On 
1 we have rk(Du)



(i) u is a Rank-One map, that is rk(Du) � 1 on 
 or equivalently there ex-
ist maps � : 
 �! RN and w : 
 �! Rn with w 2 C1(
;Rn) and � 2
C1
�

 n fw = 0g;RN

�
such that Du = � 
 w.

(ii) There exist f 2 C2(
;R), a partition
�
Bi

	
i2N of 
 into Borel sets where each

Bi equals a connected open set with a boundary portion and Lipschitz curves�
V i
	
i2N � W 1;1

loc (
)N such that on each Bi u equals the composition of V i with
f :

u = V i � f ; onBi � 
: (5.2.1)

Moreover, j _V ij � 1 on f(Bi), _V i � 0 on R n f(Bi) and there exist �V i on f(Bi),
interpreted as 1-sided on @f(Bi), if any. Also,

Du = (V i � f)
Df ; onBi � 
; (5.2.2)

and the image u(
) is an 1-recti�able subset of RN :

u(
) =
1[
i=1

V i(f(Bi)) � RN : (5.2.3)

5.2.2 Proposition [Gradient ows for tangentially 1 - Har-
monic maps, cf. [37]]

Let u 2 C2
�
Rn;RN

�
. Then, DuD

�
1
2
jDuj2

�>
= 0 on 
 b Rn if and only if the

ow map  :R� �J/F21 7.9701 Tf 3.321 4.17d0 Td [(�)167(!)]TJ/F393.202 0 Td [(B-84(
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Let u :Rn � 
 �! RN be in u 2 C2
�

;RN

�
. Consider the gradient ow8<: _(t; x; �) =

�
jDuj2
j�>Duj2 �

>Du
��
(t; x; �)

�
; t 6= 0

(0; x; �) = x;
(5.2.6)

for x 2 
, � 2 SN�1 n [[Du]]?. Then, we have the di�erential identities

d

dt

�1

2
jDu
�
(t; x; �)

�
j2
�

=
� jDuj2
j�>Duj2

�>Du
Du : D2u
��
(t; x; �)

�
; (5.2.7)

d

dt

�
�>Du

�
(t; x; �)

��
= jDu

�
(t; x; �)

�
j2; (5.2.8)

which imply Du
Du : D2u = 0 on 
 if and only if jDu
�
(t; x; �)

�
j is constant along

trajectories  and t 7�! �>u
�
(t; x; �)

�
is a�ne.

5.3 Proof of the main result

In this section we present the proof of the main result of this paper, theorem 5.1.2

5.3.1 Proof of Theorem 5.1.2

Let u 2 C2
�

;RN

�
be a solution to the 1-Laplace system (5.1.1). Note that the

PDE system can be decoupled to the following systems

DuD
�1

2
jDuj2

�>
= 0; (5.3.1)

jDuj2[[Du]]?�u = 0: (5.3.2)

Set 
1 := intfrk(Du) � 1g, 
r := intfrk(Du) � rg and 
n := frk(Du) � ng.
Then:

On 
n we have rk(Du) = dim(
n � Rn) = n. Since N � n and hence the map
u :
n �! RN is an immersion (because its derivative has constant rank equal to the
dimension of the domain, the arguments in the case of rk(Du) � n follows the same
lines as in [41, theorem 1.1] but we provide them for the sake of completeness). This
means that Du is injective. Thus, Du(x) possesses a left inverse (Du(x))�1 for all
x 2 
n



and hence D
�

1
2 jDuj2

�
= 0 on 
 n , or equivalently

jDuj2 = C2; (5.3.4)

on each connected component of 
n . Moreover, (5.3.4) holds on the common bound-
ary of 
 n with any other component of the partition.

On 
 r we have rk(Du) � r , where r is an integer in f 2; 3; 4; :::; (n � 1)g. Con-
sider the gradient ow (5.2.6). Giving that (5.3.1) holds, then by the proposition of
Gradient ows for tangentially 1 -Harmonic maps [37] and its improved modi�cation
lemma [40] which we recalled in the preliminaries, we must have thatjDu

�
 (t; x; � )

�
j

is constant along trajectories and t 7�! � > u
�
 (t; x; � )

�
is a�ne. Moreover, if there

exist somer and q such that 2 � r < q � n � 1, and @
 r \ @
 q 6= ; . Then a similar
thing happen on@
 r \ @
 q � S (when both rD and qD phases coexist), because in
this case we also have that rk(Du) � r and we have same result as above.

The proof of the remaining claims of the theorem is very similar to [41, theorem
1.1], which we give below for the sake of completeness:

On 
 1 := int f rk (Du) � 1g we haverk (Du) � 1. Hence there exist vector �elds
� : Rn � 
 1 �! RN and w : Rn � 
 1 �! Rn such that Du = � 
 w. Suppose �rst
that 
 1 is contractible. Then, by the Rigidity Theorem 5.2.1, there exist a function
f 2 C2(
 1; R), a partition of 
 1 to Borel sets

�
B i

	
i 2 N

and Lipschitz curves
�

Vi
	

i 2 N
�

W 1;1
loc (
) N with j _Vi j � 1 onf (B i ), j _Vi j � 0 onRnf (B i ) twice di�erentiable on f (B i ),

such that u = Vi � f on eachB i � 
 and hence Du = ( Vi � f ) 
 Df . By (5.3.1) ,
we obtain

� � _Vi � f
�


 Df
�



� � _Vi � f

�

 Df

�
:

:
h� •Vi � f

�

 Df 
 Df +

� _Vi � f
�


 D2f
i

= 0;
(5.3.5)

on B i � 
 1. Sincej _Vi j � 1 on f (B i ), we have that •Vi is normal to _Vi and hence
� � _Vi � f

�

 Df

�



� � _Vi � f
�


 Df
�

:
� � _Vi � f

�

 D2f

�
= 0; (5.3.6)

on B i � 
 1. Hence, by using again thatj _Vi j2 � 1 on f (B i ) we get
�

Df 
 Df : D2f
� � _Vi � f

�
= 0; (5.3.7)

on B i � 
 1. Thus, � 1 f = 0 on B i . By (5.3.2) and again sincej _Vi j2 � 1 on f (B i ),
we have [[Du]]? = [[ _Vi � f ]]? and hence

jDf j2[[ _Vi � f ]]? Div
� � _Vi � f

�

 Df

�
= 0; (5.3.8)
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on Bi � 
1. Hence,

jDf j2[[ _V i � f ]]?
��

�V i � f
�
jDf j2 +

�
_V i � f

�
�f
�

= 0; (5.3.9)

on Bi, which by using once again j _V ij2 � 1 gives

jDf j4
�

�V i � f
�

= 0; (5.3.10)

on Bi. Since �1f = 0 on Bi and 
1 = [11 Bi, f is 1-Harmonic on 
1. Thus, by
Aronsson’s theorem in [9] , either jDf j > 0 or jDf j � 0 on 
1.

If the �rst alternative holds, then by (5.3.10) we have �V i � 0 on f(Bi) for all i and
hence, V i is a�ne on f(Bi), that is V i = t�i + ai for some j�ij = 1; ai 2 RN . Thus,
since u = V i � f and u 2 C2

�

1;RN

�
, all �i and all ai coincide and consequently

u = �f + a for � 2 SN�1; a 2 RN and f 2 C2(
1;R).

If the second alternative holds, then f is constant on 
1 and hence, by the rep-
resentation u = V i � f , u is piecewise constant on each Bi. Since u 2 C2

�

1;RN

�
and 
1 = [1i Bi, necessarily u is constant on 
1. But then jDuj
2j = jDf jS j = 0
and necessarily 
2 = �. Hence, jDuj � 0 on 
, that is u is a�ne on each of the
connected components of 
.

If 
1is not contractible, cover it with balls fBmgm2N and apply the previous ar-
gument. Hence, on each Bm, we have u = �mfm + am; �m 2 SN�1; am 2 RN and
fm 2 C2(Bm;R) with �1f

m = 0 on Bm and hence either jDfmj > 0 or jDfmj � 0.
Since C2

�

1;RN

�
, on the other overlaps of the balls the di�erent expressions of u must

coincide and hence, we obtain u = �f + a for � 2 SN�1; a 2 RN and f 2 C2(
1;R)
where � and a may vary on di�erent connected components of 
1. The theorem
follows.
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Chapter 6

Conclusions and future work

6.1 Conclusions

We would like to conclude this thesis by mention that the work included in the
papers presented in the chapters of this thesis is an original work. This work consists
of new progress in the �eld of non-divergence systems of nonlinear PDEs. The new
results are varied to include: introduce new conditions, relaxe and advance existed
conditions. Some of them improve previous theorems to make them valid in higher
dimensions/vectorial cases. The thesis is a collection of four papers, the �rst two of
them are joint work with my supervisor Dr. N. Katzourakis. The third paper is a
joint paper with my supervisor Dr. N. Katzourakis and my colleague B. Ayanbayev.
While the fourth paper is a single authored work.

The main result of the �rst paper, which we presented in Chapter 2 of this thesis, is
that we introduce a new notion of ellipticity for the fully nonlinear �rst order elliptic
system

F (�;Du) = f; a.e. on Rn:

This new notion is strictly weaker than a previous one introduced in [43]. Our
new ellipticity notion allowing for more general nonlinearities F to be considered.
We refer to our new hypothesis of ellipticity as the \AK-Condition", which states
that if we have an elliptic reference linear map A : RNn �! RN , then we say that a
Carath�eodory map F : Rn � RNn �! RN is elliptic with respect to A when there
exists a positive function � with �; 1=� 2 L1(Rn) and �;  > 0 with � +  < 1 such
that ����(x)

h
F (x;X + Y )� F (x; Y )

i
� A : X

��� � � �(A)jXj +  jA : Xj;

for all X; Y 2 RNn and a.e. x 2 Rn. Here �(A) is the ellipticity constant of A.

The main outcome of the second paper, which we presented in Chapter 3 of this
thesis, is that we prove the existence of vectorial Absolute Minimisers with given
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boundary values to the supremal functional

E1(u;
0) := ess sup
x2
0

L (x; u(x);Du(x)) ; u 2 W 1;1
loc (
;RN); 
0 b 
;

applied to maps u : 
 � R �! RN , N 2 N.

We studying the vectorial case N � 2 but in one spatial dimension. The existence
of an absolutely minimising generalised solution was proved in [47] , together with
extra partial regularity and approximation properties. What makes our results dis-
tinguishable from the previous results in [47] is that we are obtaining existence under
the weakest possible assumptions. The main result of the paper is the theorem of\
Existence of vectorial Absolute Minimisers", which states that if 
 � R is bounded
open interval and

L : 
� RN � RN �! [0;1);

is a given continuous function with N 2 N. We assume that:

1. For each (x; �) 2 




countable union of a�ne straight line segments (possibly with self-intersections).

As a consequence we obtain corresponding atness results for p-Harmonic maps,
p 2 [2;1].

In the fourth paper which we presented in Chapter 5 of this thesis, we introduce
and prove a modi�ed version of the theorem of the structure of 2D1-Harmonic maps
introduced in [41]. It was one of the interesting results in [41] shows that the phase
separation is a general phenomena for smooth 2D 1-Harmonic maps. We advanced
this theorem by introducing a new version of it studying the phase separation of n-
dimensional 1-Harmonic mappings. The main result of this paper which generalise
the results of [41] to higher dimensions, is the theorem that we refer to it by \ Phase
separation of n-dimensional 1-Harmonic mappings", which states that if 
 � Rn is
a bounded open set, and let u : 
 �! RN , N � n � 2, be an 1-Harmonic map in
C2
�

;RN

�
, that is a solution to the 1-Laplace system

�1u :=
�

Du
Du+ jDuj2[[Du]]? 
 I
�

: D2u = 0; on 
:

Then, there exist disjoint open sets
�

r

�n
r=1
� 
, and a closed nowhere dense set S

such that 
 = S
S� nS

i=1


i

�
such that:

(i) On 
n we have rk(Du) � n and the map u : 
n �! RN is an immersion and
solution of the Eikonal equation:

jDuj2 = C2 > 0:

The constant C may vary on di�erent connected components of 
n.

(ii) On 
r we have rk(Du) � r, where r is integer in f2; 3; 4; :::; (n � 1)g, and
jDu((t))j is constant along trajectories of the parametric gradient ow of u((t;
x; �)) (

_(t; x; �) = �>Du
�
(t; x; �)

�
; t 2 (�"; 0)

S
(0; ");

(0; x; �) = x;

where � 2 SN�1, and � =2 N
�
Du
�
(t; x; �)

�>�
.

(iii) On 
1 we have rk(Du) � 1 and the map u :
1 �! RN is given by an essentially
scalar 1-Harmonic function f :
1 �! R:

u = a+ �f; �1f = 0; a 2 RN ; � 2 SN�1:

The vectors a; � may vary on di�erent connected components of 
1.

(iv) On S, when S � @
p \ @
q = ; for all p and q such that 2 � p < q � n � 1,
then we have that jDuj2 is constant and also rk(Du) � 1. Moreover on

@
1 \ @
n � S;
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(when both 1D and nD phases coexist), we have that u :S �! RN is given by
an essentially scalar solution of the Eikonal equation:

u = a+ �f; jDf j2 = C2 > 0; a 2 RN ; � 2 SN�1:

On the other hand, if there exist some r and q such that 2 � r < q � n � 1,
then on S � @
r \ @
q 6= ; (when both rD and qD phases coexist), we have
that rk(Du) � r and we have same result as in (ii) above.

6.2 Future work

We believe that the work in this �eld is interesting and there are still many open
problems one can work on, for example:

1. Since the theory of near operators allows us to obtain a generalisation of some
important results, one can work on the same problem of Chapter 2 considering
the new theory of generalised solutions (see [48]).

2. One can study the existence of vectorial Absolute Minimisers in higher dimen-
sions.

3. One can modify the result of Chapter 5, and prove that the images of the
solutions are curvature along some trajectories, which we couldn’t prove due to
the lack of time.
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