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Abstract 
 
A grid-based approach to fluvial flood modelling has been investigated in this 

dissertation. A spatially-distributed hydrological model can simulate flow on an area-
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Chapter 1 

 

Introduction 

 
1.1 Background 
 

Two main categories of flood forecasting models have developed in the last decades, 

‘lumped conceptual models’ and ‘physically based distributed models’ (Tingsanchali, 

1974). In this thesis, we focus on distributed hydrological models, such as the Grid-to-

Grid flow model by Moore et al., (2006), where a vital issue is the spatial discretization 

since stream flow data are integrated over catchment areas. Distributed flood models 

have the ability to take into account changes in the landscape such as topography and 

land-use and provide spatially and temporally distributed output variables (Moore et al., 

2006).  

  The main sources of uncertainty in flood modelling are initialization errors, (rainfall) 

input errors and forecast model errors (Leahy et al., 2007). Initialization errors can be 

reduced by implementing data assimilation methods and well known examples, which are 

often used in practice, are the Kalman Filter (KF) and its generalizations, such as 

Ensemble Kalman Filter (EnKF) techniques (Koster et al., 2004). An ensemble approach 

has been developed to try and deal with rainfall uncertainty, by using ensemble rainfall 

forecasts as an input to an ensemble flood model. Generally, ensemble flood forecasting 

is becoming more popular, using ensemble rainfall inputs from Numerical Weather 

Prediction (NWP) forecasts (Roberts, 2005). The Ensemble Kalman Filter is a natural 

candidate for initializing ensemble flood models, however, unlike the standard Kalman 

Filter; it has not been developed for situations where inputs play a significant role 

(Reichle et al., 2002).  
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  The basic idea of the Ensemble Kalman Filter (EnKF) is to use a statistical sample of 

state estimates instead of a single estimate. The mean of this ensemble sample represents 

the ‘best’ state estimate, while the variance provides a measure of the spread of the 

ensemble errors (Leahy et al., 2007). Also, with the use of a statistical sample in EnKF 

algorithm we calculate the error covariance matrix from this ensemble instead of 

maintaining a separate covariance matrix and that leads in a better representation of 

nonlinearity and is less expensive than the Extended Kalman Filter (Evensen, 2003). 

Finally, another benefit of the EnKF comes from the calculation of the Kalman gain 

matrix for all statistical members which decreases the fixed cost of the additional 

ensemble members (Leahy et al., 2007). 

 

 

1.2 Goals 
 

The goals of this thesis are 

 

• To design and implement a simplified one dimensional (1-D) distributed flow 

model, based on some of the ideas from the distributed Grid-to-Grid model 

(Moore et al., 2006 and Bell et al., 2007). 

   

• To implement an Ensemble Square Root Filter (EnSRF), (Livings et al., 2008); 

the Ensemble Transform Kalman Filter (ETKF), (Bishop et al., 2001) in 

conjunction with this simplified 1-D distributed flow model.  

 

• To modify the ETKF for use with rainfall inputs. 

 

• To investigate the effects of ensemble size and observation frequency on the 

behaviour of the forecast - assimilation dynamical system.   
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1.3 Principal Results 
 

A simplified 1-D distributed flow model is selected for implementation in Chapter 4. It is 

found to be useful to follow a related to the Grid-to-Grid routing scheme that described in 

Chapter 2 and to assume periodic boundary conditions for reasons of simplicity. 

Experiments with this simplified 1-D distributed flood model in Chapter 4 (Section 4.6) 

show that low order numerical schemes, such as the upwind scheme (first order accurate 

in time and space) used to integrate the simple kinematic wave equation (4.1) of the flow 

model in Section 4.1, tend to have numerical diffusion. 

  The Ensemble Transform Kalman Filter (ETKF) using rainfall inputs and the simple 

flood model, which described in Chapter 4, is selected for implementation in Chapter 5. 

Experiments with the ETKF, in Chapter 6, show that the usage of a simplified low 

dimensional distributed flow model and the sequential nature of the ETKF may lead to 

filter convergence. In view of the experimental results in Chapter 6, we expect that the 

assimilation results might be quite different when obtained on the basis of a more active 

assimilation model than the one we use in this research. Such a model will be if we 

increase the dimension of the state space, the number of days we run the model and the 

size of ensemble members.  

 

 

1.4 Outline 
 

In Chapter 2 two main points are selected for discussion. Firstly, we present an overview 

of flood forecast models, focusing on the Grid-to-Grid flow model (physically based 

distributed model), and then consider the application of these models to extreme flood 

conditions. The second focus is on sources of uncertainty in flood modelling. 
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Chapter 2 

 

Flood Forecasting 
  

 

With the incidence of severe weather and flooding on the increase around the world, 

there is a need to improve flood forecasting and warning (Dehotin & Braud, 2008). 

Floods cause physical damage, loss of basic sanitation that leads to disease, economic 

hardship due to rebuilding costs and food shortages. They are also the most frequent and 
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this flood forecast model is the fact that has minimal data requirements, since only a 

small number of spatial parameters are needed. 

  A number of studies (Michaud & Sorooshian, 1994) compared simple distributed and 

lumped conceptual models. Several distributed flood models use algorithms similar to 

those of conceptual lumped models for runoff production, but in many cases methods 

have been devised to estimate the spatial variability of model parameters within a basin. 
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respectively. A runoff production scheme operates within each grid square and the 

resulting runoffs considered in the model are surface flow due to precipitation excess and 
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where q  is the resulting runoff, P  is the depth of precipitation, E  is the evaporation, 

maxS  is the maximum water storage capacity for each grid-square and 0S  is the initial 

depth of water in storage. The details of how the maximum water storage capacity, maxS , 
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2.2.3 Grid-to-Grid Flow Routing 
 

In the Grid-to-Grid flow model the runoff production is routed by using the simple 

kinematic wave equation: 
 

)( Ruc
x
qc

t
q

+=
∂
∂

+
∂
∂                                                                                                       (2.3) 

 

where q  is the channel flow, c  is the kinematic wave speed, u  is the lateral inflow per 

unit length of river and R  is the return flow. 

  The flood model is applied separately in two different layers, as figure 2.3 shows. In this 
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components of river flow (Bell et al., 2007). The subscripts l  and r denote the flow over 

land and over river pathways respectively and the subscript b  denotes the sub-surface 

pathways of water movement.  

 

 
 

Figure 2.3 Schematic of the Grid-to-Grid model structure from Bell et al., 2007. 

 

    To approximate the four partial differential equations by finite differences, we divide a 

chosen model domain by a set of lines parallel to x-axis and t-axis to form a grid or a 

mesh. We shall assume that the sets of lines are equally spaces and the line spacings are 

equal to x∆  and t∆  such that n  and k  denote positions in discrete space and time and 

the crossing points are given by ),( tktxnx kn ∆∆
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k and n
kR  is the return flow of the n th space at time k . Equation (2.4) thus represents 

flow out of the n th space at time k , n
kq , as a linear weighted combination of the flow out 

of the reach at the previous time 1−k , n
kq 1−  , the inflow to the reach from upstream at the 

previous time 1−k , 1
1
−
−

n
kq  , and the total lateral inflow along the reach at the same time 

k , where the total lateral inflow is given by the sum of lateral inflow n
ku  and return flow 

n
kR  (Moore et al., 2006).  

  However, this scheme is not consistent (we believe there is a typographical error in the 

paper of Moore et al., 2006). Hence, instead we analyse a similar to the following 

difference scheme,  
 

)()1( 1
11

n
k

n
k

n
k

n
k

n
k Rutqqq +∆++−= −

−− θθθ                                                                          (2.5) 

 

which is stable and accurate, simple and quick to run. In the finite difference scheme 

(2.5), 
x
tc

∆
∆

=θ  is the dimensionless wave speed and for stability we require 10 << θ . 

But the most useful result of that selection is the fact that the scheme allows for different 

values of the dimensionless wave speed,θ , for different pathway (surface or sub-surface) 

and surface type (land or river) combinations, since θ  depends on the different values of 

the kinetic wave speed c . In Chapter 4, which is about the implementation of a simplified 

1-D distributed flow model using similar to the grid-to-grid routing scheme, we give an 

analytic description of how we determine the dimensionless wave speed θ  and the order 

of accuracy of the finite difference scheme. 

 

                        

2.2.4 Parameterization 

                                                     

In the grid-to-grid flood model the flow-routing and the return flow are parameterized as 

water depths by Moore et al., (2006) as follows: 
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• The routing is given by: n
k

n
k Sq κ= , where κ  is a parameter that depends on soil, 

geology, terrain and land cover and n
kS  is the depth of water in store over the grid 

square of the n th reach at time k . 

• The return flow is given by: n
k

n
k rSR = , where r  is the return flow fraction. Since 

the return flow fraction is proportional to the depth of the water of the sub-surface 

store, can take values between zero and one. In this case n
kS  represents the depth 
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Figure 2.4 highlights where the main source of errors in the flood forecasting procedure. 

These uncertainties are discussed in detail in the following Sections, rainfall input 

uncertainty (Section 2.3.1), model uncertainty (Section 2.3.2) and output uncertainty 

(Section 2.3.3). 

 
 

 
 

Figure 2.4 Error framework for rainfall-runoff models used in flood forecasting after   

                  Leahy et al., 2007. 

 
 
 
2.3.1 Input Uncertainty of Rainfall 
 

The main source of uncertainty for models of both distributed and lumped forms is the 

rainfall input (Leahy et al., 2007). For the distributed rainfall-runoff model, the main 

input is precipitation and the model output is basin flow. Hence, errors in rainfall 

measurement lead for example to inaccurate values of water in store and this is one of the 

situations we need to improve. There are important uncertainties even when precipitation 
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input to a flood forecasting model is based on recorded rainfall, since radar methods can 

observe large areas but they do not directly measure rainfall (Leahy et al., 2007). 
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2.3.2 Model Uncertainty 
 

We are not able to entirely model every process of the ‘real’ world, especially if that has 

to do with flood forecasting. Any flood forecasting model is a gross simplification of 

reality (Leahy et al., 2007). Since we want to achieve a model that works, we make 

assumptions which lead to errors. These errors however are not resolved with more data 

and therefore remain constant through an event (Leahy et al., 2007). 

  Errors will also be introduced due to model parameters. In practice, in flood forecasting 

models the model parameters are used to account errors such as errors in the volume and 

the distribution of precipitation (Leahy et al., 2007). Most of the model parameters have a 

physical meaning and are determined by the spatial distribution of topography, soil and 

land cover. However, in flood forecasting parameter errors tend to decrease with time, 

since more recorded and previous runoff data are available to calibrate the model 

parameters (Leahy et al
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Figure 2.5 Rainfall accumulations over SW England during the period 12 to 18UTC on 

16th August 2004 from 12-km, 4-km and 1-km grid-space forecast models starting from 

00UTC by May et al., 2004.           
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2.5 Summary 
 

This Chapter has demonstrated the need to improve the flood forecasting models (lumped 

conceptual and physically based distributed models) and warning, since floods cause loss 

of life, human suffering and economic hardship due to rebuilding costs. The distributed 

Grid-to-Grid model (Section 2.2) show promise in providing an integrated approach to 

modelling for any location and since there is uncertainty associated with rainfall forecasts 

whatever the resolution of the flood forecasting model; the Grid-to-Grid model needs 

improvement. 

  The main sources of uncertainty in flood modelling are divided in three categories by 

Leahy et al., (2007): input uncertainty of rainfall (Section 2.3.1), model uncertainty 

(Section 2.3.2) and output uncertainty (Section 2.3.3). An ensemble approach has been 

developed to try and deal with rainfall uncertainty, by using ensemble rainfall forecasts as 

an input to an ensemble flood model. It seems natural to combine this approach with an 

ensemble data assimilation system. These ideas are discussed in Chapter 3. Finally, in 
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capable of providing ensembles of rainfall forecasts (Moore et al., 2005). This technique 

developed within the Gandolf and Nimrod systems (rainfall advection nowcasting 

systems) to produce an ensemble of advection forecasts in which small-scale features are 

replaced by random noise as the forecast progress (Roberts,  2005). This, thus, will give 

the additional information of an ensemble of precipitation predictions and provide a 
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foundation in Kalman filtering theory, which we will describe in subsequent Sections. 

Note that the Ensemble Kalman Filter is a natural candidate for use in ensemble flood 

models such as those we described above with rainfall inputs; however, unlike the 

standard Kalman Filter, it has not been developed for situations where inputs play a 

significant role. Hence, we will describe the ensemble filter from this literature in this 

Chapter and develop it in Chapter 5 to include inputs. 

     

 

3.3 The Kalman Filter 
 

This Section introduces some notation and gives some desired properties for the Kalman 

Filter. This is an established sequential data assimilation technique which is characterized 

by alternate forecast and analysis steps. Generally, in the forecast step a previous state 

estimate is evolved forward in time to give a forecast state at the time of the latest 

observations. In the analysis step these observations are used to update the forecast state 

and to determine the state of the dynamical system by giving an improved state estimate 

called the ‘analysis’ (Welch & Bishop, 2006). For a detailed treatment see Welch & 

Bishop, (2006). 

  We assume a state vector x  of size n  that describes the state of the forecast model. In 

particular, the true state of the system at time kt  will be denoted by )( k
t tx . The analysis 

at this time (denoted with the superscript a ) and the forecast (denoted with the 

superscript f ) are given by )( k
a tx  and )( k

f tx  respectively and are of size n . The 

observation vector, of size p , at time kt  will be denoted by )( kty .  

  We shall assume that we use random variables to model errors in the flood forecasting 

model and in observations. We denote these errors tff xxe −=  and taa xxe −=  for the 

forecast and analysis, respectively. We assume that these forecasts and analyses are 

unbiased so that 0=e  and 0=e. Finally, in this Section we will use error 

covariance matrices which provide information about the size and correlation of the error 
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interpolation from model grid to the location of an observation. Also, )( ktε  is a Gaussian, 

random, unbiased and uncorrelated obse
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2006). Finally, matrix )( 1−k
a tP , in equation (3.4), is the ‘state error covariance matrix’ 

which is a )( nn×  matrix and describes the random errors in the ‘initial guess’. 

  It is worth noting that the measurement update equations (3.5), (3.6) and (3.7) alter the 

projected estimate by an actual measurement at that time (Welch & Bishop, 2006). The 

first step during the measurement update is to compute the )( pn×  Kalman gain matrix 

K

K
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3.4 The Ensemble Kalman Filter 
 

In the last decade the Ensemble Kalman Filter (EnKF) and its derivatives have been used 

extensively in real time flow forecasting, especially with the 
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state from the previous time step is also used for the approximation of the probability 

function of the actual state (Srikanthan et al., 2007). The light blue ellipses represent the 

model state prediction with uncertainty and the pink ellipses denote the measurement 

uncertainty. Finally, the Ensemble Kalman Filter combines the forecast with 

measurements and then the updated state estimate, associated with uncertainty, is shown 
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3.4.3 The Analysis Step  
 

We assume in the beginning an observation y  of dimension p , and an observation 

operator H  which maps the state vector to the observation vector. We introduce an 

ensemble of forecast observation f
i

f
i Hxy = , where f

iy
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with T  an )( NN ×  matrix which we want to satisfy  
 

                                               fTfT YSYITT 1)( −−= .                                               (3.23)  
 

Thus, using equations (3.22), (3.23) and (3.17), the analysis ensemble covariance matrix  
 

                                                  Taaa )(XXP =  

                                                        Tff ))(( TXTX=  

                                                        TffTff ))()(( 1 XYSYIX −−=                                                                     

                                                        Tff
e

f ))(( XYKX −= ,                                        (3.24) 
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by multiplying the left hand side of the equality with  fTf YRYI 1)( −+  and using the 

definition (3.18) of matrix RYYS += Tff )( . In this case is easier to compute the 

)( NN ×  matrix fTf YRY
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                                                         TXX fa =  

                                                                Tf
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4.2 Analytic Solution 
 

In this Section we present the analytic solution of equation (4.1) for specific functions of 

the initial condition, the precipitation P  and the evaporation E . Our choice of initial 

condition for this particular problem is given by  
 

                                                    )()0,( xfxq =  

                                                               )sin(1 x+= ,                                                     (4.4) 
                                                                                                                 
for π20 ≤≤ x . Then, we distribute precipitation and evaporation over the hours of day 

and we assume that the precipitation P  is changing over time with the following function 
 

                                                  )sin(1)( δ++= wttP ,                                                  (4.5)  
 

which is a time varying function with w  the frequency of rainfall and δ  the phase. The 

above assumption for precipitation P  is not very realistic, but the simple function we 

chose is useful for the calculation of the analytic solution, to enable us to validate the 

code. We assume that time 0=t  corresponds to midnight on the first day ( 1=t  is 

midnight on the second day) and each time unit corresponds to 24 hours. The first panel 
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constant along the characteristics and will be points along the 0=t  axis in the tx −  

plane; on the other hand the new variable s  will vary along the characteristic line. If, we 

use the form  
 

                                                   ))(),((),( stsxqtxq = ,     
                                         
where ))(),(( stsx  is a characteristic line we have, using the chain rule, that 
  

                                             
ds
dt

t
q

ds
dx

x
qstsxq

ds
d

∂
∂

+
∂
∂

=))(),(( .                                      (4.7) 

 

The left hand side of the PDE (4.1) is given if we set c
ds
dx

= and 1=
ds
dt ; the right hand 

side of equation (4.1) is given if we set )( EPa
ds
dq

−=
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                                    ))sin(05.0()sin(1( γβδ ++−++= ztwta
ds
dq .                        (4.10) 

 

By integrating this equation, where st = , we obtain  
 

                   )()cos()cos()05.01(),( 0xgzt
z
awt

w
atatxq ++++−−= γ
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4.3 Numerical Implementation 
 

To approximate the partial differential equation (4.1) by finite differences, we divide a 

chosen model domain by a set of lines parallel to x-axis and t-axis to form a grid. We 
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                                     )(
1
111 n

k
n

k

n
k

n
k

n
k

n
k EPa

x
qq

c
t
qq

−=
∆
−

+
∆
− −

−−− ,                                  (4.15) 

 

and finally, from the above equation, we obtain the following finite difference 

representation for the approximate values at time k : 

 

                                     )()1( 1
11

n
k

n
k

n
k

n
k

n
k EPtaqqq −∆++−= −

−− θθ ,                                (4.16) 

 

where θ  is the dimensionless wave speed equal to 
x
tc

∆
∆

=θ , n
kP  and n

kE  represent the 

precipitation and the evaporation of the n th space at time k , respectively.  

 

 

4.4 Accuracy of the finite difference scheme 
 

To determine the order of accuracy of equation (4.15) we use the truncation error which 

defined by 
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Assuming that the channel flow q , the precipitation P  and the evaporation E  are 

smooth functions of space and time, we expand in Taylor series about ),( 1−kn tx  in 

powers of x∆  and t∆ : 
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We can make the substitution of equations (4.18), (4.19), (4.20), (4.21) and (4.22) into 

the truncation error n
kτ  (4.17) and cancel:                                                                         
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Assuming that channel flow q , precipitation P  and evaporation E  satisfy the PDE (4.1) 

and using the relationship )( EPacqq xt −=+ , we have that the final structure of the 

truncation error n
kτ   is revealed more clearly by the following: 
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where we conclude that  
 

                                                 )()( xtn
k ∆Ο+∆Ο=τ ,                                                   (4.24) 

 

which shows that the scheme is first order accurate in time and first order accurate in 

space.  

 

  

4.5 Stability of the finite difference scheme 
 

To analyse the stability of the finite difference scheme (4.15), we are going to represent 

the approximated solution at some particular time step by a finite Fourier series and 

examine the stability of each individual component. We start the Von Neumann’s 

stability analysis (Wesseling, 1996) by assuming that the approximate solution n
kq  is 

given by a Fourier mode as follows: 
 

                                                       )()( xnip
k

n
k eAq ∆= , 

 

where A  is the mode amplification factor and p  is the mode wave number. Then, we 

substitute the above expression into the equation (4.15) and for reasons of simplicity we 

assume that the right hand side of equation (4.15) is equal to zero. Note that this may 

have implications for the applicability of the stability analysis to the numerical scheme 

(4.15). This will be discussed further in Section 4.6. Hence, we obtain that: 
 



 47

                           ( ) ( ) 01 )1(
111 =−







 50

  In this figure we give analytic and approximate solutions of equation (4.1) by running 

the flood model for different values of x∆ . In each panel, along the x-axis we plot the 

time (days) and in y-axis the river flow (volume/time). The first panel in figure 4.2 shows 

the analytic solution (4.12) obtained as we described in Section 4.2.  The second panel 

(a.) gives the numerical solution of the finite difference scheme (4.16) in a periodic 

domain with period π2 , for state space dimension equal to 40. The third (b.) and the 

fourth (c.) panel illustrate again the approximate solution but for different number of 

space grid points; 150 and 450 grids respectively. These are examples of the evolution of 

the flow model subject to a small number (40), to a medium number (150) and a large 

number (450) of space grid points, since we want to show the problems that we face with 

the numerical diffusion for small state space dimension. Note that the river flow values 

are taken at a specific grid point. However, the behaviour is qualitatively similar at all 

grid points. 

  These experiments have revealed two main points. Firstly, we are able to see that the 

river flow (and the error also) increases with time. This is to be expected since the rain-

rate is twenty times larger than the evaporation rate. The most important result of this 

experiment in figure 4.2 has to do with the numerical diffusion. As we can see in the 

second panel (a.) for number of grid points equal to 40 the approximate solution behaves 

differently from the analytic solution. The amplitude of the river flow oscillations 

decreases. This is a consequence of the use of our numerical scheme, which has a 

diffusive character (Morton & Mayers, 2005). In Section 4.3, we discussed that time and 

space are divided into a discrete grid and the simple kinematic wave equation (4.1) is 

discretized into finite difference equation (4.15), which in general is more diffusive than 

the original differential equation (4.12). Consequently, the approximate solution behaves 

differently from the analytic solution, since the simulated system depends on the type of 

discretization that is used, which is the upwind scheme. This scheme is first order 

accurate in time and space and that is one of the reasons that cause numerical diffusion 

(Morton & Mayers, 2005) especially if we run the flood model for small number of space 

grid points and for more than 30 days. Usually, higher order numerical methods tend to 

have less numerical diffusion than low order numerical schemes, such as the upwind 

scheme that we use in these experiments. As noted by Morton & Mayers, (2005), one of 
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the approaches that is useful to manage the numerical diffusion is to be careful to have 

sufficiently many spatial grid points. It is clear from figure 4.2 (b.) and (c.) that we 

indeed observe better results if we increase the number of grid points.   
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4.7 Summary 
   

In this Chapter, we described our new simplified 1-D distributed flow model and its 

numerical implementation. In the presentation of the methodology of the flood model 
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                                               fTffTf YYYRY ˆ)ˆ()( 1 =− .                                             (5.2) 

 

Using the Singular Value Decomposition (SVD) by Livings, (2005) we have that  

 

                                                    TTf VUΣY =)ˆ( ,                                                       (5.3) 

 

where U  is the )( NN ×  orthogonal matrix, Σ  is the )( pN ×  diagonal matrix and V  is 

the )( pp×  orthogonal matrix. Note that U  matrix in equation (5.3) is in fact the same  

U  matrix in equation (3.26). The singular value matrix, Σ ,  and the diagonal matrix of 

eigenvalues, Λ ,  are related by TΣΣΛ = .  

The updated ensemble perturbation matrix is then  
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This choice of matrix T ensures that the filter is unbiased in the sense of Livings et al., 

(2008). Using equation (3.17) and the SVD (5.3) we conclude to the following expression 

of the Kalman gain 
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from right to left and then update the ensemble mean by UzXxx ffa += . With this 

process we avoid storing the Kalman gain eK  and we only need to store a vector at each 

stage of building up z  (Livings, 2005).  
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Case 1: Rainfall input u  is perfectly known. 

In this case there is only one input u  and the only change to the algorithm described in 

Section 3.3.1 is to take account of the inputs in the forecast step as in equation (3.3). 

Considering a nonlinear dynamical model M  in the state forecast step the ensemble is 

propagated forward in time using the following nonlinear model:  

 

                                   )()())(()( 111 −−− ++= kikk
a
ik

f
i tttMt ηNuxx ,                                (5.8) 

 

for  Ni ≤≤1 . In this relationship )( k
f
i tx  represents the ith ensemble forecasted state at 

time kt , )( 1−k
a
i tx  is the ith updated ensemble state at the previous time 1−kt ,  )( 1−ktu  is the 

precipitation input at the previous time 1−kt  and )( 1−ki tη  is a Gaussian pseudo-random 

model noise at the previous time 1−kt  which for our implementation we assume that is 

equal to zero. Matrix N , in equation (5.8), is defined based on knowledge of the process 

given in Section 3.3.1. Note that a more complex (nonlinear) relationship between the 

state and input u  is possible, and could be dealt with in the same way. The case 

described here is the case we have done our experiments on. 

  Then, the ensemble mean, the ensemble perturbation matrix and the ensemble 

covariance matrix are given by equations (3.12), (3.13) and (3.14) from Section 3.4.2. We 

assume, after, as in Section 3.4.3 an observation y  of dimension p , and an observation ii
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and then update the ensemble mean by UzXxx ffa += . The above equations can be 

generalized for both linear and nonlinear observation operators (Livings et al., 2008). 

Case 2: Rainfall input u  is uncertain and can be treated as a random variable. 
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Chapter 6 

 

Experimental Results  

 
This Chapter presents the results of experiments with an ETKF implemented as described 

in Chapter 5 using observations of the simplified 1-D distributed flow model as 

implemented in Chapter 4. The experiments with the ETKF differ in the analysis step, the 

ensemble size, the number of observations and whether we assume perfect or imperfect 

background. 

 

 

6.1 Experiments with the ETKF 
 

In this Section we present the experimental results with the ETKF implemented as 

described in Chapter 5. The experiments were carried out using our MATLAB code, 

where the filtering part was written by Livings, (2005), but changes and additions have 

been made for this thesis. Note that the filter code was validated in Livings, (2005) 

experiments. 

  Before we start giving some experimental results we need to describe briefly the filter 

procedure. In the beginning, of the filter code, we declare the global variables; model, 

precipitation and evaporation parameters, as defined in Chapter 4 (Table 4.2) for the 

implementation of the simplified 1-D distributed flow model. We set the initial 

conditions equal to (4.4), which differ for each ensemble member, and we generate the 

true state using the finite difference scheme (4.16) we used to discretize the simple 

kinematic wave equation (4.1) in the flood model in Chapter 4. We generate, then, the 

observations using the truth. We assume perfect (without observation noise) or imperfect 

(with observation noise) observations which in our experiments differ in time and space. 
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Particularly, we run the filter code assuming imperfect observations and we generate the 

ensemble of observations at each update time by giving noise with zero mean and 

covariance equal to the observation error covariance matrix R . An initial ensemble of 

state estimates is then chosen. This ensemble of vectors is drawn from a normal 

distribution with a given covariance matrix and the true initial state. We assume in our 

experiments perfect or imperfect background, where for the first case the ensemble is 

translated so that the ensemble mean coincides exactly with the true initial state. These 

sample points are then propagated through the system. The approximation of forecast 

state error covariance matrix is made by propagating the ensemble of model states using 

the updated state from the previous time step. Note that there is no model noise in the 

ensemble forecasts as well as in the truth forecast. Finally, we have to mention that 

rainfall inputs (single inputs) and evaporation are specified a priori inside the flow model.   

  Figures 6.1 and 6.2 show the experimental results by running the ETKF for 10 days over 

0.01-time interval and a state space of dimension n =150 (this choice ameliorates 

numerical diffusion in the model, see Section 4.6). The main point of these figures is to 

compare the results, if we assume that the estimates are derived with the ETKF using 

ensemble members 4=N  and we run the ETKF for different number of imperfect 

observations over time. The ensemble size is rather small, although that is more like 

operations. Examples assuming ensemble size 27=N  are given in Appendix B. 

Specifically, in figures 6.1 and 6.2 we give a sequence of plots where in each graph we 

simulate 1, 5, 10 and 20 distinct measurements (imperfect observations) that have errors 

normally distributed around zero with standard deviation 1.0; in figure 6.1 we assume 

perfect background and in figure 6.2 imperfect. All coordinates are observed in space but 

in the 1st panel of figures observation is taken at the last time grid point (the last day), in 

the 2nd panel the measurements are taken every 200 time steps, in the 3rd panel of figures 

every 100 time steps and finally in the 4th panel observations are taken every 50 time 

steps up to the 10th day. Figures 6.1 and 6.2, generally, illustrate the difference between 

the filter and the truth. Specifically, each panel in these figures represents the first 

component of the output of the ETKF plotted relative to the truth. The value of the true 

state is indicated by the dotted line at zero. The three solid lines show ensemble mean 

(red line) and ensemble mean ±  ensemble standard deviation. Finally, in each panel the 
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deviation. Note, finally, that the choice of the ensemble size play significant role and we 

have to point out that for larger number of ensemble members we observe ‘better’ results. 

These are illustrated in Appendix B. 

  Generally, the use of small ensemble sizes often leads to less accurate results (Livings et 

al., 2008). It is useful to consider how the ETKF estimates converge to the true state as 

the ensemble size increases. Hence, for that purposes, figure 6.3 illustrates individual 

ensemble members with the assumption of imperfect observations. For the experimental 

results in figure 6.3 we run the ETKF for 10 days over 0.01-time interval and a state 

space of dimension n =150, since for small number of space grid points we face problems 

(numerical diffusion) with the implemented flood model. Each panel of figure 6.3 is for 

4, 10, 50 and 100 ensemble members respectively which are represented as red lines. In 

these experiments, we observe all the components in space and we assume 20 

measurements over time plotted as error bars of the 20th coordinate. In figure 6.3, we 

assume perfect background and we use the same observations for each ensemble. The 

case of imperfect background is illustrated in Appendix B. An important feature of the 

these experimental results is the fact that the ensemble spread is getting smaller after the 

first observation; and that is clear in all panels of figure 6.3. Finally, we are able to 

observe that after the first couple of observations are assimilated, the ETKF estimates 

converge to the true state, as we expected. That becomes more obvious when the 

ensemble size is increased, as in the last three panels of figure 6.3.  

  It is very important to be mentioned that after several trials of the filter we chose again, 

for all the experiments, to run the simplified 1-D distributed flow model and hence the 

ETKF for value of parameter a  equal to 0.05 (the parameter that was chosen in our 

research to depend on soil, geology, land cover etc.). With that value we allow to rainfall 

and evaporation to have the significant role in the filter, but at the same time we keep a 

balance as it concerns the increasing values of river flow during the last experimental 

days. Note that in Chapter 4, we made the assumption that is raining 20 times more than 

we have evaporation. Hence, it was expected, by increasing the value of the parameter 

(increasing also the forecast errors) to observe filter divergence and by decreasing the 

value (decreasing the forecast errors) to obtain stable filter behaviour, whether we assume 

perfect or imperfect background (the plots are not shown). 





 67

 
0 2 4 6 8 10 12

-2

-1

0

1

time (Days)z - z1ttime (Days)

z
1

 -
 z

1



 68

0 2 4 6 8 10 12
-4

-2

0

2

4



 69

  So far we show the behaviour of the filte br
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  The ETKF has been performed within contexts of the simplified 1-D distributed flow 

model, which is a low dimensional model and offers the obvious advantage of a much 

reduced dimensionality n  of the state vector x  (in terms of calculations in the 

implemented filter). In this implementation of the ETKF we make use of a state space of 

dimension 150=n  (such a small number), for computational reasons. This is an 

important limitation as reviewed in Ehrendorfer, (2007) and the possibility of 

generalizing the experimental results may lead 
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observation frequency on the behaviour of the forecast-assimilation dynamical system.     

Hence, it is important to be mentioned that the use of small ensemble sizes often led to 

less accurate results, since we observed that the ETKF estimates converge to the true 

state as the ensemble size increases. It was clear also, from the experiments, the fact that 

if more observations were assimilated, during the days we run the filter, the true state was 

often inside the band defined by the ensemble mean ±  ensemble standard deviation, 

indicating filter convergence. Moreover, the experiments have revealed and the following 

main points. The first feature pointed in the fact that the choice of perfect or imperfect 

background may affect the filter behaviour.  The selection of perfect background usually 

led in stable filter behaviour and for the selection of imperfect background we had to take 

into consideration the fact that the problem was a random sampling problem, where 

sometimes the samples do not lie within the band of ensemble mean ±  ensemble 

standard deviation. The second feature was the fact that although we observed stable 

filter behaviour, the usage of the simplified low-dimensional (1-D) distributed flow 

model and the sequential nature of the ETKF may lead to this filter convergence. Finally, 

the choice of the values of parameter a  which controls the behaviour of the rainfall 

inputs in our research may lead to different results than the one we observed. However, 

parameter, space, time, ensemble size and background limitations can result in the 

accuracy of the filter but we still can have good results. 
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Chapter 7 

 

Conclusions 
 

 

7.1 Summary and Discussion 
 

The purposes of this dissertation were to design and implement a simplified one 

dimensional (1-D) distributed flow model, using a similar to the Grid-to-Grid routing 

scheme (Moore et al., 2006) and to modify an Ensemble Kalman Filter (EnKF), the 

Ensemble Transform Kalman Filter (ETKF), for use with (rainfall) inputs and the 

simplified 1-D distributed flow model. 

  In Chapter 2, we introduced an overview of flood forecast models, focusing on the 

distributed Grid-to-Grid flow model (Moore et al., 2006), and we represented briefly the 

sources of uncertainty in flood modelling which divided in three categories by Leahy et 

al., (2007): input uncertainty of rainfall, model uncertainty and output uncertainty. An 

ensemble approach has been developed to try and deal with rainfall uncertainty, by using 

ensemble rainfall forecasts as an input to an ensemble flood model. It seems natural to 

combine this approach with an ensemble data assimilation system and these ideas were 

discussed in Chapter 3. 

  Our fundamental issue in Chapter 3 related to the description of data assimilation 

techniques, such as the Kalman (presented in Welch & Bishop, 2006) and Ensemble 

Kalman Filter methods which are valuable in flood forecasting. The Kalman Filter (KF) 

developed for linear dynamic systems and provided a means of explicitly taking account 

of input, model and output uncertainties. For nonlinear dynamic systems EnKF 

techniques (presented in Evensen, 2003) provided an alternative method of estimating 

these uncertainties by the use of an ensemble of state estimates instead of a single state 

estimate and without maintaining a separate error covariance matrix. These data 



 75

assimilation methods are useful in flood forecasting, since the use of real-time flood 

models requires attention to uncertainty estimation and model initialization (i.e. state 

estimation); problems which can be solved using these techniques. It is important to be 

mentioned, that the EnKF was not originally designed to take into account (rainfall) 

inputs and hence the algorithms described without that assumption.     

  In Chapter 4, the key idea was to introduce a new simplified 1-D distributed flood 

model, as a subject for experiments, assuming periodic boundary conditions. The 

assumption of periodic boundary conditions was not very realistic, since few rivers have 

a loop shape. However, we have chosen these conditions to make our flow model easier 
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  Chapter 5 was about the presentation of an implemented EnKF; the ETKF using the 

MATLAB code written for Livings, (2005), through modifications and additions have 

been made for this thesis. The purpose of this Chapter was to provide a complete 

interpretation of the ETKF and to present new ideas that used in the implemented ETKF. 

The key idea was to modify the ETKF for use with inputs and a simple flood model, as 

described in Chapter 4. For our implementation we used single inputs and the possibility 

of working with an ensemble of inputs may be an area for further investigation.  

  Finally, in Chapter 6 we gave an analytic presentation of the experimental results using 

the ETKF implementation of Chapter 5. We gave explanations of the features we 

observed from the experiments and of the problems that were encountered with the 

implemented ETKF. We observed that the filter behaviour depends on the assumption of 
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Appendix B 
 

Graphs of the ETKF 
 
This Appendix is a supplement to Chapter 6. Figures B.1, B.2 and B.3 correspond to 

figures 6.1, 6.2 and 6.3 of Chapter 6 and represent the experimental results by running the 

ETKF for ensemble size 27=N  for figures B.1 and B.2 and for imperfect background 

for figure B.3. They have been placed in Appendix because they mainly used for 

comparison of the results observed in Chapter 6. By increasing the ensemble size we 

observed ‘better’ results; filter convergence for both assumptions of perfect and imperfect 

background in figures B.1 and B.2. Assuming imperfect background in figure B.3 we 

observed that after the fourth observation is assimilated, the ETKF estimates converge to 

the true state. The ETKF was run making all the assumptions as in Chapter 6 for each 

figure.  
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