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Abstract 
 

 
In this dissertation we explore the Boundary Element Method for heat transfer 
in a buried pipe. We are interested in modelling the steady-state heat transfer 
from buried pipes. We are studying the temperature through Laplace’s 
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Chapter 1 

 
 

Introduction 
 
 

This dissertation explores the Boundary Element Method for the Heat Transfer 
in a buried pipe. Heat transfer occurs due to temperature difference between 
the pipeline fluid and the ambient fluid which is air or water, overcoming thermal 
resistances offered by the pipe, coatings and ground. 
The state of the fluid (oil, liquid or gas) i.e. the density and the viscosity of the 
fluid, is defined by the temperature. 

 
  

 
   Figure1: Buried pipe (source: Partially Buried Pipe Heat Transfer (Powerpoint), Chuk  
                                                    Ovuworie from Schlumberger Company) 
               

 
 
 
 
 
 
 
 
 
 

 
 

pir =radius of the pipe inside 

por =radius of the pipe outside 

cor
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We can express, at steady state, the rate of heat flow between the pipeline and 
the ambient fluid as: 

 

)(2 afpopo TTUrQ −−
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The temperature difference between the pipe inside and outside walls is given by 
the following equation: 
 
                           

                                   

p

pipo

popi
k

rr
TT

π2

)ln(
=−  

where  

                     =pir radius of the pipe inside 

                  =por radius of the pipe outside 

                            pk  =the pipe thermal conductivity 

                    piT = the temperature of the pipe inside 

                   =poT the temperature of the pipe outside 

 
The easiest way to approach this problem is to assume radial symmetry. 
 
In this case, simplifying the problem within the pipe to one-dimension,    
dependent only on r  we can easily solve the boundary value problem using 
traditional techniques. Below are the assumptions made in this analysis: 
 
Assumptions: 
 
 

• Heat flow, denoted by Q (radial heat flow per length of pipe), is 
radially symmetric within the pipe and the coatings such that T=T(r). 

 

• Heat flow is in a steady state (dQ/dt = 0) 
 

• Conservation of heat energy reduces down to Laplace’s equation 
 

   0
1

2

2
2 =

∂
∂

+
∂
∂

=∇
r

T

rr

T
T               It is Laplace’s equation, but now 

                                                              the 
θ∂

∂T
term has disappeared. 

  
 
 

(where r, θ are polar coordinates on the centre of the pipe). 
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Solving Laplace’s equation without the 
θ∂

∂T
   term, we obtain the general 

solution for temperature: 
                                          

                                               BrArT +
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 we have:  

                                      

p

pifpi
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In this dissertation we begin by introducing the Boundary Element Method and 
we separate our problem in three stages: 
 
        (1) Interior problem (bounded problem) 
 

                (2) Exterior problem (unbounded problem) 
 
                (3) Full problem. 
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Green’s second identity: 
 





 14

D 

D∂  

εΩ∂  

y 
ε 

Suppose ∆G=0 inside a domain D  
 

Suppose Dy∈  

 
 
 
 
 
 

 
 
 

 
  
 

 

 We choose G to be the solution of 0=∆G  in D/ εΩ
,
 hence we have: 
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Let   0→ε    
 

Then the 2nd part of (2.6) which is  
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Hence, 
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Dy ∈  as 0→ε  . 

 
which is the same result as  (2.5) but is defined in a slightly more rigorous   
answer. 

Suppose now, Dy ∂∈  (y is on the boundary).In this case, the same 

procedure as before can be applied with the difference that now we have a 
semicircle instead of a circle. Therefore the length of the boundary is π  

instead of 2π  in the derivations above. 
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D ε=radius of the circle  
y=centre of the circle 

 

y 
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2.1.2 Unbounded Problem 
 
 
Suppose ∆T=0 and ∆G=0 are outside the domain D  (exterior problem) 
 

Suppose Dy ∉  

 
 
 

 The following equation is equal to zero because y  is outside the domain as we 

have mentioned in equation (2.5) when ( Dyy ∉), 2.1 . 
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                                                    Same as before 
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Now, we are going to find (2.9) in the limit as R ∞→  
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2.1.4  Neumann Green’s function for a half plane Problem 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
                                                                

 

where  2Γ =pipe 

            εΓ =small circle 

             ε=radius of small circle 

             RΩ =domain 

  
              
 

We want to find the integral equation of the domain RΩ . 

 
 
 
In the  Domain : 
 
 
 Known: 
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We choose Ĝ such that 0
ˆ
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∂
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where y′  is the reflection of y  in  the line y = - z  and where   ),( 21 xxx =
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To find the integral equation of the domain we add the integral equations of 



 22

 
We consider the asymptotic condition as ∞±∞→ xy ,  

 

gTgyT +→  .                                                                                           (2.11)                      

 
Therefore,  
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∂
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We solve for    gTgyTu −−=  as ∞±∞→ xy , .                                    (2.12) 

 
Hence if we substitute (2.11) into (2.12) we have : 
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Thus the 3rd and 4th integrals are: 
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Therefore, the result of the addition of the 3rd and 4th integral is zero as 
R ∞→ . 

 
 
 
In the 5th integral we consider: 
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∫∫∫
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We are going to solve this integral equation numerically. The general integral 
equation is of the following form: 
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Γ

=Κ+ )()(),()( xfdyyuyxxu  

                   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 26

   )]2())1((2......)2(2)(2)0([
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                                      = )])1((......)()0([ hnghggh −+++       [2π periodic function  

                                                                                                         )2()0( πgg =⇒ ]. 

Where    
n

h
π2

=    (n =quadrature parameter) 

 

In our case we replace u    by
nu .  

 
Therefore, we have: 

 
  

)()])1(())1((,(....)(),()0(
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We have n equations with n  unknowns: 
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We write it as a matrix    bAx =  
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• The conventional Nyström method is a simple and efficient mechanism 
for discretizing integral equations with non-singular kernels (K(x,y)). 

 

• With a high-order quadrature rule, the solution one obtains by this 
method is a high-order approximation to the exact solution. 

 
 

In the Nyström method we could use midpoint rule, Gaussian 
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Thus, 
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                                            TABLE 1 
  

  
                                                       

                           n                            
2Lexactuu −                  

                             
                         2                            3.9356e-016       

 
                         4                            2.8353e-016       

  
                         8                           3.6854e-016       

                              
                        16                           5.2234e-016       

  
                         32                           7.5510e-016      

                                             
         
 

 We just use mesh points to evaluate the 
2Lexactuu −  . We  always get zero 

to machine precision. 
 

We have used        
2Lexactuu −

2

1
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3.1.2 Example of a single non-periodic integral equation 
 
 

Analytical solution: 
 
 

                               ∫
Γ

=Κ+ )()(),()( xfdyyuyxxu  

 
Where 

                   the Kernel=K(x, y) =
22 yx  

                   
                 Γ is a closed boundary from 0 to 1 
       

                  u(x)=
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Hence, 

                                                   
2

6

5
1)( xxf +=                                     

 
We program this example of a single periodic integral equation in Matlab and 
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3.2 Collocation Method  
 
 

The idea is to choose a finite-dimensional space of candidate solutions and a 

number of points in the domain (called collocation points), and to select that 

solution which satisfies the given equation at the collocation points. 

 

To solve 

 

                            ∫ =+
π2

0
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 So we have one equation with n unknowns →   the values of   )( jxu  . 

To get n equations we fix (3.4) to hold at n points i.e. take 
^^

1,....., nx
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We replace the integral by a quadrature rule as in Nyström Method. The 
easiest way is to use the trapezium rule. 
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Where    
n

h
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=    (n =quadrature parameter) 

 

In our case we replace φ    by
nφ .  

 
 
Therefore, we have: 
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We have n equations with n  unknowns: 

 

                                ))1((),......,3(),2(),(),0( hnuhuhuhuu nnnnn −  

 
 
 
We use the trapezoidal rule in this method and we have exactly the same 
matrix as for the Nyström Method.  
 
 
Hence the  Nyström Method is exact at mesh points. 
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Chapter 4 
 

 
Interior Problem for Laplace’s equation  

 
 
 

Consider        0=∆u  , 
 

                       Ω is a circle with radius R 
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∂
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We already know that the Fundamental solution G(
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1
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that the form of the general integral equation is: 
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Thus, we set up the interior problem as an integral equation of the above form 
and we will solve it using a code in Matlab. 
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From (2.7) of the bounded problem we have: 
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Now we are going to simplify the numerator of this fraction. 
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Below are the graphs of the numerical solution of the integral equation:   
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4.1 Separation of variables in polar coordinates 
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The above  equation has the form: 

 
f(r)=f(θ) 

 

 
 

where f(r) is a function of r and f(θ) is a function of θ. The only way in which 
the above equation can be satisfied, for general r and θ, is if both sides are 
equal to the same constant. Thus,  
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The ordinary differential equations we get are then: 
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∂
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cc BeAe −−− +=Θ⇒ θθ
 

 
 
 

We know that Θ(θ ) must be 2π periodic because is around a periodic 
boundary. 
   
         
        If c<0 then is not periodic 
           
         If c=0 then is not periodic 
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Thus  when c>0  
cici BeAe θθ −+=Θ⇒  

 
 

                               =
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As r→0 the term involving 
ν−r  is unbounded. The only way to fix this is to 

take 02 =C . 
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The interior Neumann problem is solvable if and only if: 
 
                                                  

                                           ∫ =
π

θθ
2

0

0)( dg  

 
but there is no existence of a unique solution. 
           
(Theorem  6.26,  Kress ‘Linear Integral Equations’) .                     
  
 

The coefficients A
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Chapter 5 
 

 
Exterior Problem for Laplace’s equation  
 
 
 
For the exterior problem (unbounded problem) as we have seen in chapter 2 
(2.8)  the general integral is: 
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The above equation (5.2) is the same equation as (2.6) . 
Thus, we are going to solve it numerically with the same way as the interior 
problem. 
 
 
 For the exterior problem the analytical solution is the same as (4.6) : 
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Figure 5.1: The numerical solution of the exterior problem for Laplace’s 
equation for n=4,8,16. 
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Figure 5.2: The numerical solution of the exterior problem for Laplace’s 
equation for n=32,64,128. 
 
 
 
 
Again we can see a convergence in both diagrams and as the value of n 
increases the solution becomes more accurate. 
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The following is an integral equation approach: 
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Thus, now we want to find   
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After that we replace 
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(Note: Trigonometric identity: 1sincos 22 =+ ςς ) 

 
 

Now we are going to simplify the numerator of this fraction. 
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Finally,       
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Figure 6.2: The numerical solution of the full pipe flow problem for n=32,64. 
 
 
 
As we can see from the diagrams the solution converges and by increasing 
the value of n , the solution becomes more accurate. 
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Chapter 7 
 
 
Summary and Conclusions 
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