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Abstract

The purpose of this thesis is to investigate the scattering of a train of small amplitude
harmonic surface waves on water by undulating one-dimensional bed topography.

The computational efficiency of an integral equation procedure that has been used to
solve the mild-slope equation, an approximation to wave scattering, is improved by
using a new choice of trial function. The coefficients of the scattered waves given by
the mild-slope equation satisfy a set of relations. These coefficients are also shown to
satisfy the set of relations when they are given by any approximation to the solution
of the mild-slope equation.

A new approximation to wave scattering is derived that includes both progressive and

decaying wave mode terms and its accuracy is tested. In particular, this approximation

is compared with older approximations that only contain progressive wave mode

terms such as the mild-slope approximation. The results given by the new

approximation are shown to agree much more closely with known test results over

steep topography, where decaying wave modes are significant. During this analysis, a

new set of boundary conditions is found for the mild-slope equation and the

subsequent results give much better agreement with established testtopoc -@ld-slope equT5-Tdpignfice



Contents

1 Introduction

2 Background Fluid Dynamics
2.1  The linearised boundary-value problem . . . . . .. ... .. ...
2.2 Time-independent solutions . . . . .. .. .. ... ... .....
2.3 Separation solutions . . . . .. ... oo
2.4 Approximations to time independent velocity potential ¢ . . . . .
2.5 The 1-dimensional mild-slope equation . . . . ... .. ... ...

2.6 Integral equations and variational principles . . . . .. .. .. ..

3 Further development of Chamberlain’s theory
3.1 Introduction to approximation methods . . . . . .. .. .. . ...
3.2 A one-dimensional trial space approximation . . . . . . .. .. ..

3.2.1 Outline of method . . . . . . . .. .. ... .. ... ...






Chapter 1

Introduction

A long-standing but persistent problem in the area of water wave theory is the
determination of the effect of bed topography and obstacles on a given wave
field. An example of a practical problem faced by coastal engineers is to predict
the amplitude of waves in harbours, where both man-made breakwaters and the
shape of the sea bed affect the wave behaviour. Such problems involve the scat-
tering, diffraction and refraction of waves and are mathematically formidable for
linearised theory, even with relatively simple bed and/or obstacle geometries.
The work presented in this thesis is solely concerned with the effect of bed
topography on an incident wave train. We do not address problems where an
obstacle, such as a barrier, affects an incident wave train, except for mentioning
them in this introduction and noting the solution methods used. The effect of
variations in the still-water depth on an incident wave train is examined using
linearised theory. We prescribe the incident wave train and the deviation in the
still-water depth, and seek the additional waves, the scattered waves, caused by
this deviation. A typical problem requires the determination of a velocity poten-
tial satisfying Laplace’s equation within the fluid, a mixed boundary condition
on the free surface, and a given normal velocity on rigid boundaries. If the fluid

domain extends to infinity



deviation from a flat sea bed. Problems where analytic solutions exist are usual-

ly for a limited selection of straightforward geometries which include horizon



mission or total reflection is possible. This approximation method proved less
accurate when the ratio of barrier separation to barrier length became small.
Newman [43] addressed this case, by a different approach which involved match-

ing solutions both near the tw



s of wavelengths for which total transmission of the incident wave is possible,
and the insertion of an additional barrier resulted in an infinity of wavelengths
corresponding to zero reflection.

These problems with barriers that contain gaps become more difficult when
the water is not assumed to be deep, as the motion is then also affected by the bed.
Macaskill [34] considered the reflection of water waves by a thin vertical barrier
of arbitrary permeability in water of finite depth. An integral equation for the
horizontal fluid velocity was derived by an application of Green’s theorem and
was solved by collocation methods. A serious problem for the solution process to
overcome involved the numerical difficulty of evaluating a Green’s function given
by an infinite series. We are faced with the same problem in Chapter 5.

In Porter [50], there is a general discussion about the refraction/diffraction
problem for vertical-sided breakwaters of finite depth, in relation to Green’s the-
ory and integral equation methods. Examination of several special cases for the
class of problems where the breakwaters are straight, parallel walls containing
gaps showed that the resulting integral equations are conducive to straightforward
numerical solution techniques. Indeed, a very efficient computational method
which solves the problem of diffraction of a plane wave train through a gap in an
infinite straight breakwater, and the complementary problem of diffraction by a
finite strip, was given by Chu and Porter [11]. The solution procedure involved
the conversion of known first-kind equations for these problems into second-kind
equations which are much more amenable to numerical techniques. This was an
early example of the use of the technique of invariant imbedding in water wave
theory.

For all the problems discussed so far, the geometries have involved vertical
boundaries in water of infinite or constant depth. Allowing the water depth to
vary increases the difficulty of the problem, and consequently exact solutions are
exceedingly rare for such problems. The exceptions to this are limiting cases such
as shallow water, where the wavelength is assumed to be much larger than the
water depth.

Lamb [28] derived an exact expression for the reflection coefficient for the

problem of waves incident on a vertical step in shallow water. Bartholomeusz [1]









quation in the shallow water limit. Through this work, Fckart also discovered a
useful approximation to the root of the well known ‘dispersion relation’, a tran-
scendental equation which connects the deep-water wave number to the wave
number in finite water depth. Eckart did not pursue his approximation to the
full linear problem further possibly, according to Miles [40], because he had ob-
tained a rather unsatisfactory approximation to the group velocity in his 1951
lecture notes.

A more recent and very popular approximation of the full linear problem was
given by Berkhoff [2] & [3], whose ‘combined refraction-diffraction’ equation has
now become known as the mild-slope equation. There have been many subse-
quent derivations of the mild-slope equation, which typically approximate the
vertical structure of the motion and restrict the bed slope to be ‘small’ or ‘mild’
in a sense to be described later. The derivation given by Berkhoff [3] is a clarifi-
cation of the original derivation given in Berkhoff [2]. However, the mathematical
approach used in Berkhofl [3], which is a perturbation procedure in terms of two
small parameters, is still not rigorous. Smith and Sprinks [54] gave a more math-
ematically sound derivation of the mild-slope equation, by expanding the vertical
dependence of the velocity potential in terms of an orthogonal set of functions

and remo
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varying (mild-slope) component onto which a rapidly varying component of small
amplitude is superimposed. Kirby then used a vertical integration procedure to
derive what is now called the extended mild-slope equation. He verified that it
gave much better agreement with the experimental data at the Bragg peaks for
ripple bed problems than the mild-slope approximation. However, this improve-
ment to the mild-slope approximation is only valid for ripple bed problems.

A further improvement to the mild-slope equation, which is valid over arbi-
trary depth profiles, was given by Chamberlain [6]. He followed the same proce-
dure which Lozano and Meyer [32] used to derive the mild-slope equation. In other
words, Chamberlain approximated the vertical structure of the velocity potential
and removed the dependence on the vertical co-ordinate by integration over the
depth. Chamberlain does not make the further assumption that the bed slope
is mild, and consequently finds a new approximation to the velocity potential.
Chamberlain and Porter [9] formalised the derivation of this new approximation,
giving derivations using a variational approach and a Galerkin approach. They
named the resulting equation the modified mild-slope equation, and showed that
it reduced to the mild-slope equation when the bed slope is assumed to be mild.
Chamberlain and Porter [9] also show that for ripple bed problems the modified
mild-slope equation subsumes the extended mild-slope equation too. They found
that the results given by the modified mild-slope equation are in better agree-
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pensive. In Rey [52], the series of steps which approximates the depth profile is
subdivided into smaller subsystems called patches. In each patch, the decaying
modes generated at one step are not assumed negligible at neighbouring steps
in the patch. However, the decaying modes generated in one patch are assumed
negligible at neighbouring patches. This seems to be a superior approximation to
that used by O’Hare and Davies [45]. Rey [52] goes on to test his approximation
on Booij’s [5] talud problem, finding good agreement with the full linear results
computed by Booij. He also found that his results were quite different to those
given by the mild-slope approximation, even for taluds with gradient less than
one third, for which Booij [5] had claimed were in good agreement with the full
linear model. Rey [52] also tested his approximation on ripple beds, finding good
agreement with wave tank data.

After re-establishing the well-known full linearised equations for the scattering
of waves by varying topography in Chapter 2, we go on to state the mild-slope
equation and briefly review the integral equation procedure that Chamberlain [7]
used to solve it.

Noting that coastal engineers require only about three decimal place accuracy
in solutions of water wave problems, we go on, in Chapter 3, to improve the com-
putational efficiency of Chamberlain’s integral equation solution method. This
is done by using a new choice of trial function and seeking solution accuracy to
three decimal places rather than the machine accuracy achieved by Chamberlain.
We also reinvestigate Fckart’s [15] approximation and the symmetry properties

of the coeflicients of the reflected and transmitted waves.



much better agreement with the results that have been obtained using full linear
theory and those found by Rey [52] than the results obtained using the original
boundary conditions.

In Chapter 5, we consider the full linear wave scattering problem over an
arbitrary hump. The term hump is used to describe a local elevation in an
otherwise flat uniform bed. Using Green’s theory, the boundary-value problem for
the velocity potential is converted into a second-kind integral equation. Initially,
an approximation in this equation is tried, but it proves to be rather inaccurate.
It is found, however, that the second-kind integral equation for the potential can
be converted into a first-kind integral equation for the tangential fluid velocity.
The kernel of the first-kind equation is much easier to evaluate numerically than
that of the second-kind equation. A variational approach is then used to obtain
approximations to the coefficients of the reflected and transmitted waves which
are second-order accurate compared to the approximation of the solution of the
integral equation. These results are then used to test the accuracy of the new
‘decaying mode’ approximation derived in Chapter 4 and also to test the accuracy
of the modified mild-slope and mild-slope approximations.

A summary of the work presented, together with conclusions and suggestions

for future research concludes this thesis.
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Chapter 2

Backirround Fluid Dynamics

In this chapter we present the linearised equations satisfied by the velocity poten-
tial for the irrotational flow of an incompressible, homogeneous fluid over a bed
of varying depth. It is assumed that the fluid occupies a region which extends to
infinity in every horizontal direction. The fluid is also bounded below by a bed

of given permanen



the fluid velocity at time ¢ and a given point (z,y,z) in the fluid be denoted
by ¢(x,y,2,t). Assuming the fluid motion starts from rest, with gravity the

only external force acting, then ¢ is necessarily irrotational. It follows that there

exists a velocity potential ®(z,y, z,1) such that ¢ = —V® where V = (88—90, aa—y, 88—2).
The assumption of the fluid being homogeneous and incompressible reduces the

continuity equation to

V.g:()

and hence ® satisfies Laplace’s equation,
Vo =0, (2.1)

in the fluid.

The bed is assumed to be fixed and impermeable and is defined by
z = —h(z,y), as depicted in Fig.2.1. As the fluid cannot flow through the bed,
the normal derivative of the velocity potential on the bed must be zero, giving

rise to the boundary condition

0P
o= 0 onz = —h(x,y) (2.2)
where % denotes the outward normal derivative on z = —h(z,y).
Z y Free surface of

the fluid
X

z=0

h(xy)

N T T

Figure 2.1: Vertical cross section of the fluid domain.

By considering the Stokes derivative % = % +q . V which denotes differenti-

ation following the motion of the fluid, this boundary condition may be rewritten
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as a so-called ‘kinematic boundary condition’ as follows. On any fluid boundary
given by f(x,y,z,t) =0 we have

Df _

=0 (2.3)

as otherwise there would be a finite flow of fluid across the boundary (Lamb [28]).
The bed is defined by z = —hh



and

0o
E_gn onz=0. (2.10)

On eliminating n from (2.9) and (2.10) we obtain the final boundary condition

of the linear boundary-value problem, which is given by

Vo = 0 —h <z <0,
o® 10%*®
L2 = 2.11
6z+g8t2 0 onz=10, ( )
d
g—+Vh.V<I> =0 on z = —h(z,y),
z

2+ y? = oo. If we write

together with a radiation condition imposed as x
® = &, + &, where ®; represents the incident wave field, then the radiation

condition causes @, to represent only outgoing waves as @2 + y?*



together with a radiation condition.

The free surface elev



Denoting the wavelength by A, then using the fact that A = 2x/k






is arrived at in the form
V.auVey + kugy=0, (2.24)

where Re(goe™?") is an approximation to the free surface shape,

1 — e—2uh
h)y = — 2.2
u(h) S (2.25)
k* = v*coth(vh) , (2.26)

2,
and v = U? is the deep water wave number.

Eckart’s equation (2.24) also reduces to the linearised shallow water equa-
tion under the same assumption as in the mild-slope case. Eckart notes that
(2.26) actually approximates the root of the dispersion relation (2.18) to within
4% for all values of kh. However, he seemed to be discouraged from further de-
velopment of his approximation due to the unsatisfactory approximation to the
group velocity he obtained. Recently, Miles [40] has shed new light on Eckart’s
approximation, deriving (2.24) as well as (2.21) and (2.23), via an elegant vari-
ational procedure. Miles notes that the direct calculation of the group velocity
from Eckart’s dispersion relation (2.26), gives an approximation to the ratio of
group velocity to phase velocity within 1% of the exact value for all values of
kh. Miles also notes that while the mild-slope approximation conserves wave
energy, FEckart’s approximation does not (except in uniform depth). Also, on

a gently sloping beach, Eckart’s appro



solutions of which are approximated by variational techniques. For a specified

incident wav



cess outlined by Chamberlain [7], which may be summarised as follows. Let

) x
r = 7 5
. L
Uiz) = h—ou(l:zj) \
. Lo

The following account discards the accents from these definitions in the pursuit

of a simple notation. In the above circumstances, the mild-slope equation (2.21)

d (.déo
& (U

may be written as



and where the notation kg = £(0) (and &1 = k(1)) is used.

The coefficients appearing in the differential equation (2.30) are uniquely de-
fined once H, ag and 7 are assigned. The only remaining information necessary
is the choice of incident waves. On the flat bed for # < 0, the non-dimensional
mild-slope equation (2.27) reduces to ¢} + ro*do = 0. Similarly, on the flat bed
for x > 1, (2.27) reduces to ¢ + k12¢9 = 0. Therefore, we suppose in general,
that there are two incident waves with known coefficients A* propagating from
r = Zoo respectively. This will result in two outgoing waves, with unknown

coefficients B*, propagating towards z = oo respectively



where the terms involving " are the consequences of allowing slope discontinuities
in Hat x = 0,1. Greater detail of the derivation of these boundary conditions and
the merit of writing them in the form of (2.32) can be found in Chamberlain [6].

Linearity allows superposition of solutions corresponding to waves incident
from the left with solutions corresponding to waves incident from the right. This
removes the need to solve the problem with two incident waves. By removing one
incident wave, the amplitude of the remaining incident wave may be set equal to
unity, without loss of generality. Accordingly the two reflection and transmission

coefficients, denoted by R and T, for this problem are defined as follows.

B~ Bt
IfA+:0th€H Rl:; and TIZF

Bt B~
IfA_:()then RQZF and TQZF

The subscripts distinguish between waves incident from the left(1) or the right(2).
Now we define (; to be the solution of (2.30) and (2.32) for an incident wave from
the left (requiring AT = 0 in (2.32)). (; is defined to be the solution for an
incident wave from the right (requiring A~ = 0 in (2.32)). Using the equations
(2.31), the reflection and transmission coefficients can now be defined in terms of

¢; (7 = 1,2) in the following way.

If AT =0:
Am (2.34)
T Gi(D)e™ | U(0)
A Uy
If A= =0:
Ry — G(L)e™™ | U(0) _ 2
AT\ U 7 (2.35)
(2(0)
T2 — T .

The outgoing wave coefficient Bt comprises of two parts — that part of A~
transmitted beyond the talud and that part of A" reflected back from the talud.
We can make a similar statement about B~, and these resulting relationships can

be summarised as

Bt Ty Ry A~
B~ Ry T At
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on defining two self-adjoint operators L and P by

(L)) = 5 [ sin (ol = ) ) d
and
(PO)(w) = pla)C(a)
Then ( € Ly(0



thus the coefficients in (2.40) have been found. Also, on finding ¢(0) and ((1),
then the reflection and transmission coefficients are known through (2.34) and
(2.35).

On substituting the above equation (2.40) for ( into the right hand side of
equations (2.38) and (2.39) and rearranging them, it can be shown that ((0) and

((1) are determined by solving the rank 2 system of equations

by bs o By B, cs —by cg— b C(O)
bs b B, B co —bs 3 — by (1)
()G ) G)
= — + 2 .
by B, B g — by

(2.42)

in which
By = %(An + Ajz) and B, = %(An + 20412 — Asza)
and
1 1 .
A]k = 2—/ Xj(t)p(t)fk(t) dt = —(vapfk) (jvk = 172)
Ko Jo 2K0

Stationary principles are used to generate approximations to the inner prod-
ucts Aji (J,k = 1,2) with upper and lower bounds by firstly ensuring that the
function p is entirely one-signed. This allows the non-self-adjoint operator A in
the integral equations (2.41) to be replaced by a self-adjoint one. In general, p
does not possess this property, but can be made to do so by adding to it or sub-
tracting from it a known quantity. This process requires a slight change in the
boundary conditions (2.32) which causes the definitions of the ¢; (j = 1,...6) in
(2.33) to be amended. Full details of this device are in Chamberlain [6]. With p

one-signed, a new self-adjoint operator S can be defined by

(S) (@) = s(@)x(z) ,

where

and

A =sgn(p) (that is A = £1) .
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Then the integral equations for x; (j = 1,2) given by (2.41) can be rewritten as

A)%j = Sf] (] = 172) ) (243)
where
Xi = Sx; (j=1,2)
and
A=1-)\SLS .

Clearly Ais self-adjoint and as S is bounded, SLS is a compact operator.

It is easy to show that the functionals

Jo : Ls(0,1) > R (k=1,2),
J3 : LQ(O,l) X LQ(O,l) — R

given by

Je(pLfiT13;;TD3; Tc3ac3e D3;D3STj3T;; THAA



pr (k= 1,2) determined by the second functional (2.45) as py (k = 1,2) respec-

tively.
The further assumption that there exists b > 0 such that Vp € L5(0,1),

blpll* < (Ap,p) < alpl® . (2.47)

where the existence of an a > 0 is guaranteed since A is a bounded operator,

establishes the following upper and lower bounds on the inner products of interest:

Ti(ér) —HA&—kaH (R S i) < Jul8e)+ HAfk—kaHz (k=1,2) (2.48)

and

Glpin, p2) — Rpa, p2) < (X1, 5f2) < Gpas p2) + R(p, p2) (2.49)

where the functionals G and R are given by

171 1 n n
Gl ) = Jslpaas i) + 5 (5 + ) G = S o, A = S12)

and

1/1

Ripo) = 5 (5 = =) [ Am =S [~ 5]

An excellent derivation of these upper and lower bounds may be found in Porter
and Stirling ([51],pp.254-257,261-263). Approximations to ¢ and b can be found
in Chamberlain [6]. Disappointingly, the approximation to b can be negative in
certain cases, resulting in just a stationary approximation to the inner products
with no upper and lower bounds.

The implementation of the solution process follows by firstly assigning H, oy,
7 and the direction of the incident wave. Then, after ensuring p is one-signed (by
adjusting it to make it so if necessary) and choosing the dimension of the trial

space, the trial functions given by (2.46) are generated and the approximations

Ji(&1), Jo(& i)



Chamberlain [7] has shown that 2- or 3- dimensional trial spaces can result in
the determination of approximations to the reflection and transmission coefficients
to machine accuracy.

This integral approach can also be used with the linearised shallow water e-
quation and Eckart’s equation with certain modifications. Chamberlain [6] has
done this for the linearised shallow water equation, and the necessary modifica-
tions required to use this integral approach to solve Eckart’s equation are given

in Chapter 3.

30



Chapter 3

Further development of

Chamberlain’s theory

In this chapter some extensions to the work appearing in Chamberlain [7] & [8]
are presented. A new computationally cheap integral equation solution method
is developed for the three model equations mentioned in Chapter 2, namely the
mild-slope equation, Eckart’s equation and the linearised shallow water equation,
over a range of parameter values. This method uses the approximation methods
discussed in section 2.6 but with a new choice of trial functions. Eckart’s equation
is further investigated and improvements to it are suggested. Finally, the sym-
metry properties of the solutions of the three model equations are studied, and
an unexpected property is discovered that any approximations of the solutions

still possess the symmetry properties.

3.1 Introduction to pproxim tion methods

This section begins by illustrating the interest in solving the model equations
over a continuous range of their parameters for a specified bed shape. Booij [5]
provided some experimental evidence concerning the accuracy of the mild-slope
approximation to the velocity potential ¢ satisfying (2.13). As a part of that
paper, a talud problem was considered and a graph (see Fig.3.1) was presented
of reflected amplitude (|R]|) given by the mild-slope equation against Wj, a pa-

rameter which denotes the length of Booij’s talud. In terms of the notation used
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in Chapter 2, the dimensionless parameters of the mild-slope equation are given
in terms of W, by ag = W,/v/0.6 and 7 = 0.6/W, (See Chamberlain [6] p.114
for details). Booij computed |R| using full linearised theory and superimposed
it onto his graph, observing that the two sets of results coincide for talud slopes

with gradien



three model equations over a range of their parameters. F






upper and lower bounds exist, extremely accurate approximations to Rj and
Ty (k = 1,2) are such that ilg&f)g{”(]— LPY — fill, ||(I = LP)ug — fill} is
O(10™*) for all values of ag and 7.

In future, whenever we specify the accuracy in the approximations to the re-
flection and transmission coefficients of any of the model equations, we shall just
give the maximum error in |Rg| and |Tx| (k = 1,2). In the case where the upper
and lower bounds do not exist, this will imply that ir:l?)g{"(] — LP)&, — ka27
(1 LP) I






(3.9) stationary within the N-dimensional trial spaces. We shall denote the func-
tions pr (k = 1,2) determined by (3.8) as { (k = 1,2) respectively, and the
functions py (k = 1,2) determined by (3.9) as uy (k = 1,2) respectively.

As already noted, the Chamberlain solutions, &, and u; (k = 1,2), are very
accurate approximations to the solutions y; and y» of the integral equations (3.4),
but they also require considerable computer time to determine. The integral
equation solution method we have used to solve the mild-slope equation at each
value of ag and 7 employs this expensive process of generating the Chamberlain
solutions. Instead of this, we shall use the Chamberlain solutions at a chosen
ap and 7 to approximate y; and ys in the neighbourhood of oy and 7. In the
present circumstances, we only need to consider problems where 7 is either fixed
or is a function of ag, as in the problem considered by Booij [5] given in section
3.1, where 7 = V0.6 /. In the following we shall only refer to the value of ag at
which we are solving the problem, and we shall not mention 7 as we automatically
know its value once «y 1s assigned.

A superscript is now introduced into our established notation to denote the
value of ap at which each operator, function and functional is evaluated.

We introduce the 1-dimensional trial functions
pr = il (k=1,2) (3.11)

as approximations to {° and y5° , for some r; € R (k =1,2) determined so as
to make the functional (3.8) stationary. Therefore, substituting (3.11) into (3.8),

we see that
T (pr) = JE0(ri) = 2r (€70, S f0) — vk (A%ogle, &°)  (h=1.2)

regarded as a function of ry, is stationary where

dJge
drk

=0 (k=12).

Hence the constants ry, (k= 1,2) are given by

(&, s )
(Angie, &)

Ty =

37



and the approximations to the inner products (Xgo, Pdof,fo) (k=1,2) are

( oo Sdof]??o)z
(Asoge, &)

Jo(pr) =

respectively.
To find an approximation to the inner product (Xfo, Pdofzdo), we use the

1-dimensional trial functions

Qe = Vepy (k=1,2) (3.12)

as approximations to x5° and \5°, for some v, € IR (k = 1,2) determined so as
to make the functional (3.9) stationary. Therefore, substituting (3.12) into (3.9),

we see that

IS (g q2) = J5% (0, 72)
=7 (S £, pi°



process, of solving the mild-slope equation over a range of values of «g, can be

contin



as we increase the tolerance in the error (and so increase the accuracy) of the
‘cheap’ solutions. Also, for a fixed tolerance in the error, we find that the value
of amax varies from one depth profile to another.

Consider, for example, the solution of the mild-slope equation (MSE) for the
test problem of Booij [5], mentioned in section 3.1, for an incident wave of unit

amplitude from the left. Here the depth profile is given by

H(:z;)zl—%x 0<x<1).

In section 3.1, Chamberlain’s method was used in generating extremely accurate
solutions of the MSE for this problem with «aq taking values between 0.05 and 8.5
at intervals of 0.05 (with 7 given at each value of ag by 7 = \/ﬁ/ao) to produce
the results seen in Fig.3.1. This required the use of a 3-dimensional trial space
for ap < 2 and a 6-dimensional trial space for ag > 4. The total CPU run-time
required to generate all these results was 51m 55s. It should be noted that the
same Sun 1 workstation was used to generate all the CPU run-times for all the
methods used in this chapter.

The new method is now used to solve this problem for the mild-slope equation
over the same «ag range. We choose the tolerance in the error to be a minimum
of 2.s.f. accuracy in |Ry| and |Tk| (k = 1,2). The new method produces ‘cheap’
solutions at the 29 values of g in the range [0.05, 1.45]. For all ag > amax = 1.45,
our new method has to use Chamberlain’s method to generate the solutions.
Fig.3.2 depicts the amplitude of the reflected wave, generated by both methods
over the ag range from 0.05 to 1.45, against W (the parameter used by Booi]
[5] in his corresponding graph), where W, = v/0.6cp. As one would expect with



IR,]

— MSE: New 1-D method
10_1 - MSE: Chamberlain method

1
10™

Figure 3.2: Reflected amplitude for the depth profile H(x)=1—2/32 (0<x < 1).

CPU run-time to generate these results by Chamberlain’s method is Tm 39s.



and hence ||LP|| increase with g, making more terms in the trial functions

pr (k= 1,2) given by (3.10) (and consequently larger trial spaces) necessary
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Figure 3.3: Comparison of Chamberlain solutions at two values of ag
the functional (3.8), we see that
Jeo(pe) = T (ks i)
= 2 (&, SUOL) + s (60, ST (k=12
— [17 (A%, &) +2msi (AR, 6°) + 57 (Ame, )]

regarded as a function of ry and s (k = 1,2), is stationary where

0J;, _ 0 and 0J;,

= k=1,2).
8rk &sk 0 ( 7)

Hence the constants r and s (k = 1,2) are given by the rank two system,

(dvoge, ) (Asg gg ) (g S0 fio) (k=1,2).

(g, g0) (g, g7) J\ s )\ (68 sos2)
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Clearly, the approximations to y5° and y5° given by (3.13) and (3.14) are
very much quicker to calculate than the N-dimensional Chamberlain solutions,
given by (3.10), when N > 1. We shall refer to the solutions generated by the
trial functions (3.13) and (3.14) as the ‘cheap’ solutions. It is obvious that the

do

approximations (3.13) and (3.14) to \§°, y5°



of the maximum error in all the ‘cheap’ solutions found in the previous interval
[ao, aj]. We use the following ‘rule of thumb’ to choose af*. If the maximum
error in the ‘cheap’ solutions found in the interval [ag, o] is 2 (or more) orders
of magnitude smaller than the specified tolerance, then of* is chosen so that the
length of the interval [of, a5*] is greater than the length of the interval [ag, of).
It the maximum error is the same order of magnitude as the specified tolerance,
then a3 is chosen so that the length of the interval [af, af*] is less than the
length of the interval [ag, af]. Otherwise ag”* is chosen so that the length of the
interval [af, ag]is equal to the length of the interval [ag, af]. The Chamberlain
solutions are then found at of* and the whole process starts again.

We clarify this situation in the following example. Fig.3.4 depicts a typical

situation. In this case, the errors in all the ‘cheap’ solutions found in Interval

Interval 1 f Interval 2 " Interval 3 | Interval 4

' Error in “‘cheap’ solution |
' at mid-point exceeds
3 the tolerance

3 Interval 2A | Interval 2B :

'Maximum error inthe ' Maximum | Maximum ' Maximum error in
1 “cheap” solutions is rerrorinthe terrorinthe | the ‘cheap’ solutions
11 order of magnitude | ‘°heap’ | “cheap’ | is the same order

| 'solutions is  : solutions is ! . !
! less than the tolerance | : » of magnitude as the |
| 1 3ordersof : 3 orders of |

3 magnitude magnitude 3 tolerance
| lessthanthe : less than the |
i tolerance tolerance
| ® | @ | { @ { ® { © O
)
a, a, a, GO a, a,

Figure 3.4: An example situation depicting the values of ap at which Chamberlain

solutions are found.

1 are within the specified tolerance. No Chamberlain solutions are known at
ag > ap® and the maximum error of all these ‘cheap’ solutions is 1 order of
magnitude less than the tolerance. Therefore, the next value of «g at which
Chamberlain solutions are found is chosen so that the length of Interval 2 is
equal to the length of Interval 1. This value of aq is denoted by ag® in Fig.3.4.
The error in the ‘cheap’ solution at the mid-point of Interval 2 is not within the

tolerance. Consequently, Chamberlain solutions at ap =mid-point of Interval 2
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are found. This value of «ag is denoted by ao® in Fig.3.4. The errors in the
‘cheap’ solutions in Interval 2A are within the tolerance, and as the Chamberlain
solutions are known at ag = ap® > ozo(?’), the next interval is 2B. Here the errors
in the ‘cheap’ solutions are also within the tolerance. No Chamberlain solutions
are known at ag > ap® and the maximum error of all the ‘cheap’ solutions found
in Interval 2B is 3 orders of magnitude less than the tolerance. Therefore, the
next value of ag at which Chamberlain solutions are found, which is denoted by

ao® in Fig.3.4, is chosen so that
length of Interval 2B < length of Interval 3 < length of Interval 2.

Here, the upper bound arises because sufficiently accurate ‘cheap’ solutions could
not be obtained at all values of agp in Interval 2, and therefore could not be
obtained in Interval 3 if it had the same length as Interval 2. The errors in the
‘cheap’ solutions found in Interval 3 are within the tolerance, with the maximum
error being the same order of magnitude as the tolerance. As no Chamberlain
solutions are known at ag > ozo(S), the next Chamberlain solutions are found at
oy = ozo(G), where ap(® is chosen to make the length of Interval 4 less than the
length of Interval 3. The process continues like this until solutions have been
found for the required g range.

We are now in a position to use this method. It is implemented by firstly
assigning the depth profile H, the tolerance in the error, the initial ag range
(do, ofo), the final value of «g, the relationship between ag and 7 and the incre-
ment to be added to «ag to give the next ap at which a solution is to be found.

Chamberlain solutions are then found at ag = ay



(&%)



IR



T given at each value of ag by 7 = v/0.6a9). Using Chamberlain’s method to gen-

erate extremely accurate solutions of Eckart’s equation, with three-dimensional



IR, |

CPU time compared with using Chamberlain solutions at each value of ag, which
is slightly higher than that achieved in the mild-slope and Eckart examples due to
the larger decrease in the number of Chamberlain solutions used. From Fig.3.6,

we notice that there is no observable difference in the results, as expected with

0.14

0.12

0.1

—— New 2-D method
Chamberlain method

0.08
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0.02

0 1 2 3 4 5 6 7 8 9 10

Figure 3.6: SWE reflected amplitude for depth profile H (z) = I4a(1—2?)(0 <2< 1).

the choice in the tolerance of the errors. Similar percentage savings have been
found for all three model equations on all bed profiles tested, with the tolerance
in the error as specified above.

This section has shown that the two-dimensional trial space method signif-
icantly reduces CPU run-times by approximately one third for all three model
equations on all depth profiles tested. Although this is an excellent improvement,

we can do even better as shown in the next subsection.
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3.3.3 Extra computational saving

A further source of computational saving can be effected without compromising
the approximations already described. As already mentioned in this chapter, by
substituting trial functions £,° (k = 1,2) into the functionals J;° (k = 1,2), given
by

TROE0) = 2060, 570 ff0) — (A%ge,g0)  (k=1,2),

we generate approximations to the inner products
(xp, Pfio)  (k=12). (3.15)

Similarly, by substituting trial functions p;° (k = 1,2) into the functional J5°,

given by

J5°(



It turns out that J35°(£7°,£5°) and J§°(ui®, p3°
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had a run-time of 51mb55s and Eckart’s equation had one of 49m37s. Miles [40] also
revived Eckart’s equation, when he derived it from a new variational approach.
Miles’ notes that Eckart’s equation conserves wave action but, unlike the mild-
slope equation, does not conserve wave energy (except for uniform depth). Miles
compares the two approximations through the calculation of reflection from a
gently sloping beach of finite offshore depth and finds that Eckart’s equation
is inferior to the mild-slope equation in its prediction of the amplitude in the
reflection problem if the offshore depth is neither shallow or deep. This agrees
with the evidence appearing in Fig.3.5 where the reflected amplitudes of the mild-
slope and Eckart approximations are compared over a talud with depth profile
H(z) = 1 — 22 (0 < 2 < 1). The similarity of the mild-slope and Eckart
solutions, depicted in Fig.3.5 for the depth profile H(z) =1 — 2z (0 < o < 1)
encouraged attempts to improve Eckart’s approximation without compromising
its advantageous explicit form.

The dapth profiles of concern here are the ones which vary only in the in



numbers could be resolved by simply using the correct wave number, given by
the positive real root of the dispersion relation (3.3) in Eckart’s equation instead
of Eckart’s approximation to it, which is given by (3.19). However, this device
defeats the advantage offered by Eckart’s equation — that each term in the equa-
tion was explicit. So the issue is whether a new, explicit approximation to the
positive real root of (3.20) can be generated which is more accurate than (3.21).
This is indeed possible.

A direct approach is used in which the solution x of (3.20) is approximated

by adding a small correction term to (3.21). Thus « is approximated in the form
T =29+ 2

where x9 = ay/coth(a) and x1 is a small correction term. Substituting for x in
(3.20) gives
a = (xo + x1) tanh(xg + x1) ,

that is,

tanh(ro) + tanh(z,) ] (3.22)

1 + tanh(ao) tanh(zy)
Then, using the expansion tanh(zy) = x; + O(a?),

a:(:zﬁo—l—xl)[

a(1 4+ tanh(xg) tanh(aq))
= a + atanh(xo) tanh(zy)
tanh(xg) 4 tanh(xy)
1 + tanh(ao) tanh(zy)
tanh(xg) + x1 + O(x?)
1+ [z1 + O(27)] tanh(zg)
= a + [vo tanh®(zo)]x; + O(2?) |

=a+ (zo+ z1) l ] tanh(xg) tanh(zy)

“at o] [tanbaoer + 0t

and
(20 + x1)[tanh(zo) 4 tanh(21)] = 2o tanh(zo) + z1 (2o + tanh(zg)) + O(z7) .
Thus (3.22) becomes
a + [rotanh®(zo)]a1 = wotanh(xo) + @1 (o + tanh(zg)) + O(23) ,

and neglecting second and higher order terms in x; (as 21 is assumed to be small)
gives

a — xotanh(xg)
zo + tanh(zo) — zo tanh®(xg)

1 =
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Thus, the new two-term explicit approximation to (3.20) is given by

T =9+ 2
a — xgtanh(xg)

=0t xo + tanh(xg) — g tanhz(xo)

Y

which simplifies to
x%sechQ(ajo) +a

- zosech®(zo) 4 tanh(zg)

(3.23)

Computations have shown that (3.23) gives the solution x of (3.20) to machine
accuracy for ¢ > 3.1, and for 0 < a < 3.1, the maximum difference is 0.04%. Thus
(3.23) is a new explicit approximation to (3.20) which is a significant improvement
on (3.21).

We shall now replace the function x = k(x) defined by (3.19) by

L { fsech(u) + Ar
r(z) = rH (vsechQ(v) + tanh(v))

(3.24)

where v = v(2) = At Hy/coth(ArH), in Eckart’s equation, and call the resulting
equation the new Eckart equation. We now find the solution of the new Eckart
equation for an incident wave of unit amplitude from @ = —oo over the depth
profile given by

fﬂ@:1—§x O<z<1).

We use the streamlined two-dimensional method to solve this problem with «ag
taking values between 0.05 and 8.5 at intervals of 0.05 (with 7 given at each
value of ag by 7 = \/ﬁao)- We choose again the tolerance in the error to be
a minimum of 2.s.f. accuracy in |Ry| and |Tk| (k = 1,2). The amplitude of
the reflected wave given by the new Eckart equation is depicted in Fig.3.8, along
with the corresponding results from the mild-slope and Fckart’s equations. We see
that the peaks and troughs of the reflected amplitudes predicted by the mild-slope
and new Eckart equations are almost in line. The size of the reflected amplitude
predicted by the new Eckart equation is also an increase on that given by Eckart’s
equation. However, the reflected amplitude given by the new Eckart equation is
still not as large as that given by the mild-slope equation. The difference in results
from both is now due to the difference of the mild-slope and Eckart U functions.
As yet, no approximation has been found, such as the one used in conjunction

with the wave number functions, that can rectify this difference. The new Eckart
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on the bed shape and so it was hoped that this device would bring the reflected
amplitude into line. The flat bed depths for the Eckart problem in 0 < 2 and
x > 1 were chosen so that the Eckart and mild-slope wave numbers were identical
at each ag and 7 over these flat regions. This guaranteed that at each value of
ag and 7, the mild-slope and Eckart problems had the same incident wave. A

variety of ¢



approximation is effected by replacing the s function (3.19) in Eckart’s equation
by (3.24). The new equation still gives a slightly inferior reflected amplitude than
that given by the MSE. The very accurate, explicit approximation (3.23) to the
root of the dispersion relation (3.20) has never been seen before, and is an excel-
lent first term to use in an iteration method to give machine accurate solutions

of (3.20). (See Newman [44] for details of such iterative methods.)

3.5 Symmetry Properties

Here, certain intrinsic properties of a particular type of second-order differential



where the constants e;



scattered waves propagating towards © = oo respectively. As already noted in

Chapter 2, the reflection and transmission coefficients for an incident wave from

the left (At = 0) are defined by

B~ Bt
Rl = F and T1 = F (332)
and those for an incident wave from the right (A~ = 0) are defined by
Bt B~
R2 = F and T2 = F (333)

Using the equations (3.31) and enforcing the continuity of ¢¢ and ¢ at © = 0

and x = 1 gives the boundary conditions

#0(0) 4+ tropo(0) = 2AT1ikg ,

3.34
o0(1) —ik1o(l) = —2A%ike ( )

Choosing p, ¢, r and m of the differential equation (3.25) to be the corre-
sponding terms in differential equation (3.30), that is, p = U, ¢ = £*U, r = 0
and m = 0, reduces (3.29) to the identity

o = v fsen |5 - 2]+ o - Pom)

(3.35)
-Clo 60- 9o

—U@{WW@)E—%+7¢@——MQ§

Now the symmetry relations of the reflection and transmission coefficients can

be easily found. Firstly, choose ¢ to be the solution of (3.30) and (3.34) for an
incident wave of unit amplitude from the left (so A~ =1, AT =0) and choose ¢
to be the complex conjugate of ¢. Hence 1 satisfies (3.30) and the constants in
the boundary conditions (3.27) and (3.28) satisfied by ¢ and v respectively are

given by

Gozi/iozgo 5 bozlzfo, COZQi/iO:gO 5 (336)

Glz—ililzgl 5 blzlzfl, 01:0251

and from (3.31) and (3.32) we see that the functions ¢ and 1 have end-point

values

$(0) =1+ Ry =(0) and (1) = Tye™ =2p(1) . (3.37)
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Substituting (3.36) and (3.37) into the identit



Substituting into the identity (3.35) gives the final symmetry relation

| Ry






Substituting @ = 0 and @ = 1 into the integral equation satisfied by ¢; (j = 1,2)

yields
o [P0 de = a5 5, = 0)
o /o1 F7(0)p(t)i(1) dt = a; 4 Be™" — e 0ah;(1)

2/430

and hence it follows that

S(tr,h2) = a1t2(0) = azthi(0) + (Biepa(1) — Barpn(1))e™™ =0 . (3.50)

This identity is equivalent to the identity (3.35) which was derived within the
framework of differential equations. Before the symmetry relations are rederived,
the definitions of the reflection and transmission coefficients, as given previously

in Chapter 2, are restated here for convenience as follows:

Rl = CI(O) -1 ’ (3 51)
T = Cl(l)e_ml % . ‘

_ o—in @ _ e~2im
o= G() U(1) ’ (3.52)

15 = (3(0) ,
where the subscripts 1, 2 distinguish between waves incident from the left or the
right respectively.
Substituting ¢y = (1 (and therefore oy = a1 , 1 = ?)1) and 1y = (; (and

therefore ay = a1, (B3 = 51) in S gives

S(¢1,80) = Gi(0) + Ga(0) — |Ga(0)]? — Z—;|<1<1>|2 =0,

and employing (3.51) reduces this to the symmetry relation (3.38) , namely,

u)

RiP+ 2P =1

| 1| + /ioU(O)| 1|

By the same procedure
S(Clv Cz) =0 1mphes /ilU(l)Tl == /ioU(O)TQ 5
S(Cl,c_z) =0 1mphes KlU(l)FQTl == —KoU(O)TQRl 5

- . . koU (0

S((2,(2) =0  implies | Ry |* + K?UEl; T,> =1
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In the final part of this section, we need to recall the rank two system of
equations defined in Chapter 2. This relates (;(0) and (;(1) (7 = 1,2), the end
point values of the solutions (; (7 = 1,2) of the integral equation (3.44) with
the inner products (x;, Pfx) (j,k = 1,2). The x; (j =1,2) € L3(0,1) are the

solutions of the real valued integral equations

(I = LP)x; = f; (j=1.2),

where [ is the identity operator and the operators L and P are defined by

(L)) = 5 [ sintrole =t (e dt and  (P)(e) = pla)xla)

and where the free terms are defined by fi(x) = cos(kox) and fa(x) = sin(kox).
In Chapter 2 and the first part of Chapter 3 , we have used variational techniques
to approximate the values of these inner products. For convenience we give the

rank two system of equations here, namely,

bg bg . Bl B2 Cs — b? Ce — b3 C](O)
—1
b5 66 B2 Bl Cy — bS C3 — 66 C](l)
(3.53)
b B, B cyg—b
=—| "l T =1y,
b4 B2 B1 C1 — b4
where the values of known constants b; and ¢; (¢ = 1,...,6) are chosen according

to whether (; corresponds to the solution of the integral equation (3.44) for an
incident wave from the left or right, or the complex conjugate of the solution of
(3.44) for an incident wave from the left or right (as seen earlier in this section),

and

B = 3(An + Ap) and By = 3(An + 2iA1 — Az)

and

L PR Gik=1,2).

:%

Now the reflection and transmission coefficients are defined by (3.51) and (3.52)

A]‘k

in terms of (;(0) and (;(1) (y = 1,2) and therefore , through the rank two
system of equations (3.53), in terms of the inner products (x;, Pfx) (5, k = 1,2).

When calculating the reflection and transmission coefficients, it was noticed that
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where

d; —d; B, B
x, = ! Y. = “ 7] and W = b

=3 bl 2

¢ pi—e¢ B, B
Now as Bj is real, W* = W, where * denotes the conjugate transpose.

It follows that

yrz = vy (iWy,) = (=i Woy,)" = (—iyiWy,)" = (—yjze)" = —23y,

and so the identity
Yoy + a3y, =0 (3.58)

results. Recapping the above procedure, the two forms of (3.57) have been
used to eliminate the W matrix to give the identity (3.58). The inner prod-
ucts (v, Pfr) (j,k = 1,2) only appear in the W matrix which only occurs in
equation (3.57) of our breakdown of the rank two system. So now an identity
(3.58), very similar to the previous identity (3.50) found in our integral equation
framework, has been derived that relates (;(0) and (;(1) (7 = 1,2) and is inde-
pendent of the inner products. Therefore this identity will always be satisfied no

matter what v



the symmetry relations. It follows that the symmetry relations are an intrinsic
part of the problem rather than of its exact solution, in the sense that they are
always satisfied whatever the accuracy of the solution.

In this chapter, several extensions to the work appearing in Chamberlain [7]
& [8] have been presented. A new integral equation method has been developed
which solves the mild-slope, Eckart and linearised shallow water equations over
a range of their parameters in less than one half of the CPU time required by
Chamberlain’s [7] integral equation procedure. Eckart’s approximation has been
investigated and improved and, as a by-product, a new, explicit and very accu-
rate approximation to the solution of the dispersion relation has also been found.
Finally, after rederiving the symmetry relations of the reflection and transmis-
sion coefficients of these approximations, we have shown that these coefficients
satisfy the symmetry relations even when they are inaccurately calculated, an

unexpected property.
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Chapter 4

new approximation to wave

scatteringg

In this chapter, a new approximation to the full linear wave scattering problem
is derived. A Galerkin approach is used to derive an approximation to the time-
independent velocity potential ¢ which takes account of decaying wave modes as
well as progressive wave modes. The present approach uses an n-term approxi-
mation based on the propagating wave mode and the first (n — 1) decaying wave
modes over a flat bed. If none of the decaying wave mode terms are used and if
we discard terms that are second-order on the basis of the mild-slope assumption
|Vh| < kh, where h is the undisturbed fluid depth and k& is the corresponding
wave number, then this approach reduces to the mild-slope approximation. The
extended approximation is then tested on a selection of beds of varying steep-
ness and the results are compared with the corresponding results given by the

mild-slope approximation.

4.1 A G lerkin pproxim tion method

Recall from Chapter 2, that the time-independent velocity potential ¢ satisfies

Vi = 0 —h <z <0, (4.1)
@—1/ =0 onz=20, (4.2)
0z
d¢
—+Vh.Vo = 0 on z=—h(z,y), (4.3)

0z
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where V = (88_907 88_y7 88—2) and V = (88_907 %). We also require additional conditions
on lateral boundaries or a radiation condition if the fluid extends to infinity to
completely specify ¢. For the moment, we do not concern ourselves with these
additional conditions as our initial aim is to reduce the dimension of the boundary-
value problem for ¢ by approximating its dependence on the z co-ordinate. This
is achieved via a direct application of the classical Galerkin method.

We seek a weak solution & ~ ¢ of (4.1) — (4.3) in the sense that the residual

V2¢ is required to be orthogonal to a given function ¢. In other words, we require

[[ (vt aay =0,

where D can be any domain in the plane z = 0. Integrating by parts gives

OVt ) de 4 [ — £, ) dedy =0,
[ (0 ) )

which becomes

HDU_:(W%%%) dz—[¢ (zbz—mb)]zzﬁ[wzwwvg]zz_h) dady =0, (4.4)

when boundary conditions (4.2) and (4.3) are imposed on £. Equation (4.4) is
a weak form of the boundary-value problem (4.1) — (4.3) and can be used to
generate approximations to the solution of that problem.
We shall use a Galerkin approximation £ & ¢ of the form
n—1
E(r,y,2) = > oz, y)wi(z.y,2) | (4.5)
7=0
where w; (j =0,1,...,n — 1) are given functions and ¢; ( =0,1,...,n— 1) are

to be determined from (4.4). We choose our given function v as

@Z)(l’,y,Z) = wk(xvyvz) ’

for some k € (0,1,...,n —1). After some simple manipulation, which includes

use of the identity
V2 (¢jw;) = w;V2ie; +2V¢; . Vw,; + ¢;Vw;

it is found that the functions ¢5 (k = 0,...,n—1) must satisfy the coupled system

of differential equations

|
-

{v%j [0 wwndz +

0

ECH
Il



for k=0,1,...,n — 1, where

~ ~ 0

f]‘k = f]‘k(w]‘, wk) = Vh (ijk)zz_h —|— 2/h kaw]dz
and

. . Jwy, dwy,
g]k g]k(w]7 wk) |:LU] (Z/wk aZ )] 2=0 —I_ |:LU] aZ —I_ wkv vw] z=—h

0
+/_hwkv2wjdz .

Chamberlain and Porter [9] have used this Galerkin approach with a 1-term
approximation (that is, n = 1 in (4.5) ) to derive a new approximation to ¢ that
contains the mild-slope approximation as a special case. They also show that
this new approximation to ¢ can be derived via a variational approach, which
is similar to the recent work of Miles [40]. Indeed, Chamberlain and Porter [9]
use the same trial function in both the Galerkin and variational approaches. The

variational principle used in [9] is 6L = 0 where L is the functional given by

L(¢) = HD (%V(fz)zzo - % I_Oh(@f)de) dady .

By considering variations which vanish on the lateral boundary C' x [—h, 0], where

C' is the boundary of D, it follows that L is stationary at £ = ¢ if and only if ¢



of the relation

— v = Bjtan(B;h) , (4.8)

arranged in ascending order of magnitude. Equation (4.8) has an imaginary root

By = —ik, and so we can write g in the form
~ cosh(k(z + h))
= 4.
o cosh(kh) ’ (4.9)

where k = k(h) is the real positive root of the local dispersion relation
v = ktanh(kh) . (4.10)

For each fixed value of v, the equations (4.8) and (4.10) implicitly define
B;=B;jh) (j=1,...,n—1) and k = k(h) respectively. Notice that these
w; (7 =0,...,n—1) are an orthogonal set for z € [—h, 0] and they satisfy the

same surface condition as ¢, namely

Ow;

— =0 onz=10 (j:(),l,...,n—l).
0z

l/w]‘

It follows that the function ¢gwg is an approximation to the progressive wave
mode part of ¢ and the functions ¢1wy, ¢awsq,..., ¢,_1w,_1 are approximations
to the ISt, ZHd, ceey (n— 1)th decaying wave mode parts of ¢ respectively.

With this choice for the functions w; (7 = 0,1,...,n — 1), it follows from
equations (4.8) and (4.10) that, at each z,

where

1 2B;h
uj(h) = —tan(B;h) (1—|—_7]) (j=0,1,....n—1),

2B, sin(2B;h)
n—1
with By = —ik. The approximate solution {(x,2) = Y d;jw; ~ ¢ satisfies the
7=0

same free surface condition as ¢, namely

0
a—i —vE=0 onz=20.
We recall from Chapter 2 that over a flat bed, the general solution of (4.1) — (4.3)
0 n—1
is given by ¢ = Z ojw;. Hence, over a flat bed, ¢ = Z ¢jw; is the only solution
J=0 7=0
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of (4.1) — (4.3) corresponding to the progressive wave mode and the first (n — 1)

decaying wave modes. Also, since the free surface elevation 7 is defined by
O R I
g :

then the approximate solution is such that n ~ Re {e‘“’t Z?_l



This is a relatively new approximation to the progressive wave mode part of ¢
and equation (4.15) is known as the modified mild-slope equation (MMSE). This
equation was first derived by Chamberlain [6] and more recently by Chamberlain
and Porter [9] via the Galerkin and variational procedures given earlier in this
section. Investigations of the modified mild-slope equation over a variety of bed
profiles are carried out in Chamberlain and Porter [9] and in a subsequent paper

by Chamberlain and Porter [10]. Similarly, with the 1-term trial approximation,



Other approximations for wave scattering by a bed of varying topography that
include decaying wave mode terms have been given by O’Hare and Davies [45]
and Rey [52]. The approximation used by both sets of authors is very similar
and involves replacing the bed profile by a series of horizontal shelves joining at
vertical steps. Over each flat shelf, the velocity potential has an infinite series

represen



and
82w4 8u
w'/ / J h//

T 0h? oh
Therefore, the functions f;x and gjx (j,k = 0,...,n — 1) defined by (4.12) and

(W) + (j=0,....,n—1).

(4.13) respectively can be written as

fi(x) = ([w]wk]z__h +2/ Wy ]dz> h' (4.21)

gin(x (/ wk—dz) B

. aﬁ% 0 . a2ﬁ% N2
+ (lkaL:_h —I—/_h Wi ETE dz) (h")" .

A little algebra incorporating the use of relations (4.8) and (4.10) shows that the

and

(4.22)

integrals appearing in (4.21) and (4.22) are given by

B |
* 9w, sec(Bih)sec(B;h) (32 Bz) (k#37),
J wkﬁdz = SGCQ(Bkh)
4(Dy, + sin(Dy)) [Sm(Dk)_Dk Cos(Dk)] (k=)
and
J D Py TABlsecByh)sec(Bih) [ 2B+ (B}~ BY) sin®(B;h) (k #j)
_h k o0h? Dy + Sin(Dk) ((Bk N B],)(Bk - Bj))2
and
0 L 0Riy — Bysec?(Byh) ) y
J kadZ_H(Dk—I-sin(Dk))S[ (D) + 4(Dy)? sin (Dy)

+3D,, (Dk +2 sin(Dk)) (sinZ(Dk) -2 COS(Dk))

+6sin*(Dy,) (1 + 26082(%Dk)) ] :

where Dy = 2Bh, and By = —tk. It is simple to see that the remaining terms

in (4.21) and (4.22) are given by
[ﬁ)kﬁ)j] = sec(Byh)sec(B;h) (J,k=0,....n—1)
z=—h

and

[wk O bR rER b DR R F AT 28 e R o d g2 ke e S R Dt



4.2 Sc ling

We choose the same class of depth profiles as in Chapter 2, which are varying

only in some finite interval of . We assume that

ho ‘v’:liﬁ(),
hy Ve>1,

h(z) =

where hg, hq and [ are given constants, and where h(x) is continuous on (—o0, 00).
We allow h to have a slope discontinuity at the ends of the varying bed, that is,
at + = 0 and * = [. At the moment we shall consider the scattering of plane
harmonic waves normally incident on a given depth profile. The generalisation
to obliquely incident waves will be dealt with later.

The scaling process now employ



Remembering that By = —uk, we also define the real dimensionless parameter
k by k = 2. As in Chapter 2, we shall discard the accents from the scaled
independent variable and from the ¢, (kK =0,...,n—1) in the pursuit of a simple
notation.

In terms of these dimensionless quantities the coupled system of equations

(4.11) is
Uy (¢ — Bi*én) + nf {Find + G} =0 (k=0,1,....n—1), (4.23)

where the prime denotes differentiation with respect to x. The functions Uy are
given by

QﬂkTH

tan(Byr H) (1 + 7) (k=0,....n—1) (4.24)

Ui sin(28,7H)

- QﬂkT

and the functions (3, are the positive real roots of

— ap’t = By tan(ByrH) (1 +/TD2f2//Tf. Tj2T//Tf2/TD2/Tc22(Tj2TpSiE



and

sec*(BrTH



to a hump arising from putting hy = h; and therefore ko = k1 and ) = 3}

(k=1,...,n—=1).

The fluid domain under consideration extends to infinity. Therefore, we pre-
scribe radiation conditions for ¢y (k = 0,...,n—1) that are based on the radiation
condition for ¢ described in Chapter 2. Hence, we assume that two plane waves
propagating from x = 400 with known coefficients A* respectively are incident
on the talud. The 1-dimensional analogue of the radiation condition for ¢ implies
that the outgoing wave solutions must be bounded at *+ = +oo. Hence, there
will result 2 outgoing plane waves with unknown coefficients BE heading towards
x = too respectively. There will also result 2(n — 1) outgoing decaying wave
modes with (n — 1) of these heading towards @ = oo with unknown coefficients
B (k=1,...,n—1) and with (n — 1) heading towards * = —oo with unknown
coefficients B, (k=1,...,n —1). Therefore, we assume

A=eior | Breminor g < ()
dolx) = (4.

A+e—iﬁll’ + B(-Jl-eiﬁlac T Z 1

Y



Here, we have used the notation W) = W;(0,z), W} = W;(1,2) (j =0,...,n—1),

where W, = LW]‘, and the functions Wj (j =0,...,n—1) are given by

a3t

~ _ cosh (k7(z+ H)) o _cos (Bit(z+ H))
Wolz, 2) = cosh (k7 H) and - Wi(e,2) = cos (B;7H)

The set of functions {W] )+ 1e ]N} is orthogonal for z € [—H,0] and in par-
ticular
[* Wit = { RS
up k=7,
where U; = U;(x) is defined by (4.24).
We wish our approximation £ to possess as many properties of ¢ as possible,
and so we certainly need to require that ¢ and % are continuous at the ends of
the talud, that is, at © = 0 and = = 1, throughout the fluid depth. In other

words, we require

SRS
51 52 5 8;1; 8;1; (l’ 0, H(O) ~ Z >~ 0) 5
Iy 08
52 53 5 ax ax (l‘ 1, H(l) ~ Z >~ 0)
Boundary conditions on ¢; (j = 0,...,n — 1) are now derived from the above

matching equations by employing the same Galerkin procedure used in section
4.1 to derive the differential equation system satisfied by ¢; (j =0,...,n —1).

Invoking the continuity of £ at @ = 0 gives

n—1 n—1
DCTWP =" 6;(0)W? (—H(0) <z<0), (4.33)
7=0 7=0
where
A™+ By ) =0),
Cj_ _ { ) 0 | (] )
B G=1,...,n=1).

Multiplying (4.33) by W2 (for some k € [0,1,...,n — 1]) and integrating with

respect to z from —H(0) to 0 gives

Cp = o 1) TDojTjoTT fodd



where

CF = )
Bif e Pk (k=1,....n—1).

{ Ate " 4 Bfeim (k=0),
As we allow the depth function H(x) to have a slope discontinuity at @ = 0
and x = 1, then it follows that for j =0,...,n — 1
oW,
dx

oW,
70, -

=04+

oW,
ox

#0 and oW,
i dx

r= r=1+

=0,

r=0—

since the depth function H(x) is constant for + < 0 and « > 1. Therefore,

invoking continuity of % at x = 0 gives

e R s W
DAIEDY {¢}Wj + ¢ al,]._l 7 (4.36)
7=0 7=0 =0+

where

ino (A~ — By —0),
D = 0 ( 0 ) | ¥ )
3B} J=1,...,n=1).
Multiplying (4.36) by Wy (for some k € [0,1,...,n — 1]) and integrating with
respect to z from —H(0) to 0 gives

Di; =61,(0+) + ¢x(0)]



and dj;, = djx(1—). Substituting (4.34) into the expression for D} and (4.35) into

the expression for Di gives the coupled boundary conditions

n—1

¢6(0)+¢o(0)ik—7(xH ) tanh(kTH)]| _, Z 0(/5] 0)= 2ikoA™, (4.37)

7=0

oo(1)—o(D[ik+7(xH) tanh(kTH)]| _, Z 0(/5] (0) =—2ik e AT (4.38)

7=0

$1(0) = 6x(0)[Br —7(BrH ) tan(Se7 H)J| Z %0i(0)= 0, (4.39)

n—1
G (1) +ou(DBr+7(Butl) tan(Bur H)]|,oy = > djpdi(1) = 0, (4.40)
7=0
where £ = 0,...,n—1 and where the derivatives are evaluated inside the interval

(0,1).

The approximation to the free surface elevation is given by

n(x,t) ~ Re{e_mf(x,())} (—oo <z < o0).

These boundary conditions also make the approximation to the free surface con-
tinuous at = 0 and = = 1. However, the approximation to the slope of the free
surface is continuous at * = 0 and = 1 only when the slope of the bed is also
continuous at = 0 and = = 1.

Massel [36] uses the same approach to derive the boundary conditions for his
version of the z independent system (4.23). However, in his approach, Massel

aW,
dx

terms when he imposes his version of the matching condition
=04+

% = %atx =0 (—H(0) < z < 0) and omits the 8817?




the talud joins the flat beds. Therefore, the results given by Massel [36] for
the 1-term approximation for Booij’s test problem are wrong because he uses
inappropriate boundary conditions.

In the case of a 1-term approximation, the differential equation system (4.23)

reduces to the modified mild-slope equation
(Uodp) + (KJQUO + Goo) $o =0

This is the differential equation that Massel [36] solved with his incorrect bound-
ary conditions. Chamberlain and Porter [10], [9] have also used this equation in
a variety of test problems. The above equation reduces to the well-known mild-
slope equation if the Gpp term is omitted. Some of the authors that have used this
equation include Berkhoff [2], [3], Smith and Sprinks [54], Booij [5], Kirby [26],
O’Hare and Davies [45], Chamberlain [7], [8], Rey [52], Chamberlain and Porter
[10] and [9]. For both the modified mild-slope and mild-slope equations, all the
above authors have used the boundary conditions which arise from enforcing the
continuity of ¢g and ¢ at the junctions where the varying depth region meets
the flat beds. For the scaling used in this chapter, these boundary conditions are

given by
#o(0) +



are

1 27 H cosh? (kT H)
/ (1 M — 9k A-
$6(04)+ 0(0) [“‘3 (25 sinh (267 H) + QKTH)Q ] 0+ e
2 (4.42)
. 1 27 H cosh” (k7 H) ~ '
(1=)—=do(l — — ! =2 AT,
¢o(1—)— ol )[ZK—I_(Q/Q sinh (267 H) ‘|‘2/‘37—H>,/€] 1— e

As far as is known, these boundary conditions are completely new and reduce to
(4.41) only when the varying bed has a continuous slope at the junctions with
the flat beds.

We shall refer to the sets (4.41) and (4.42) of boundary conditions for the mild-
slope and modified mild-slope equations as the old set and new set of boundary
conditions respectively.

In Section 4.8, w



From equations (4.31) and (4.32) we see that ¢o(0) = A~ + By,
do(1) = ATe ™1 + Bfe 1, ¢,(0) = By (k=1,....,n—1) and ¢(1) = Bfe™”



We only need to consider the problem of approximating the reflection, trans-
mission and decay coefficients, and then the B (k=0...,n—1) can be deter-

mined through (4.47) for any A*.

4.4 A system of Fredholm integr 1 equ tions

We wish to solve the coupled differential equation system (4.23) together with
boundary conditions (4.37) — (4.40). We know from Chamberlain [7] that when
the system (4.23) is a scalar equation (that is, when (4.23) is generated using a 1-
term approximation) then an integral equation procedure can be used to solve the
boundary-value problem to a high degree of accuracy. When the system (4.23)
is a vector equation (that is, when (4.23) is generated using an n (n > 1) term
approximation) an integral equation solution method is much more difficult to
implement. A method of converting the system (4.23) and boundary conditions
(4.37) — (4.40) into a system of Fredholm integral equations is now given. The
resulting system of integral equations presents serious problems for numerical
solution methods and no attempt is made to solve this integral equation system
here.

Chamberlain [6] expends much effort in finding a straightforward method to
convert the mild-slope equation and its boundary conditions into an integral equa-
tion. He uses a variation of parameters method to obtain the integral equation.
We can also use this method for our system (4.23) and boundary conditions (4.37)
— (4.40). As the idea here is only to indicate the form of the system of integral
equations that results, we just give the major steps that occur in the conversion
process to the vector integral equation.

We introduce the variable changes

Uy
Ux()

én(z) = () (k=0,....,n—1), (4.48)

where UY = Ui(0) (k = 0,...,n — 1). Substituting (4.48) into (4.23) and re-

arranging, we find that the functions (x (k = 0,...,n — 1) satisfy the coupled

90



differential equation system

9 n—1 U/
- (5;8) Ce=prCr— D { [Mjk 5 ]k] G+ N]kC 1 (4.49)
J2k

Here, we have used the notation

=52~ (8) + Ui —(U’i) ot k=0, n—1),

20, \20,) Uy
[

Mjk: UU 2Uk2G]‘k (k:(),...,n—l),
_0 .

Njk: UOU Uk2 7k (k:(),...,n—l),

where G, and Fj; (j,k = 0,...,n — 1) are given by equations (4.27) — (4.30)
and the functions 3y (k =0,...,n — 1) are given by equations (4.25) and (4.26).
As usual, we have used the notation Y = 3x(0), 8 = Br(1) and UY = U.(0)
(k=0,...,n—1).

The boundary conditions satisfied by the functions ¢, (kK =0,...,n — 1) can
be found in exactly the same method as that used to find the boundary conditions
for ¢p (k=0,...,n— 1) in section 4.3. Omitting the details of this process, it

turns out that we can write these boundary conditions in the form

C}Q(O‘I’) - 61866(0) = _262776 (k = 07 cees N — 1) 9 (450)
Cllc(l_)—l_ﬂng(l) = 262652516 (k = 0,...,71— 1) ’ (451)
where
_ ! 20k A~ 0 % H) tanh(kTH
ro = e ikoA™ 4 (o(0) ZUO—T(KJ ) tanh(kT H) . JZ;) OC] \

iﬁo

sg = e. {2@'/4;114"'6

21Kg



_e_ﬁk

s = T i (st [k ety ()

Ulnl
k;)\I;]kCJ }7

for (k=1,...,n—1), and where U}! = Ug(1) (k=10,...,n—1).
The merit of writing the boundary conditions for ¢ (k=0,...,n — 1) in the
form given by (4.50) and (4.51) is that it is now simple to use a variation of

parameters procedure to convert the boundary-v



Therefore, it follows that we can rewrite Fjj, (for j # k) as

0 . .
~ OW: ~ oW, ,

Fip(z) = (J {Wk 8H] —Wja—Hk__lk,dz) H'(z) .

_H u

Hence, for j # k, we find that I}, and G are related by 7k



where

T
g(l’) = (Co(x)v Cl(x)v"'v Cn—l(x)) s
; ; 0 0 0 0 T
i(x) = (foemox + goe—mox7 7:16—511’ + 51651907 e fn—le_ 1T T gn_leﬁn_lx) 7
and the operator L is defined by

(£¢



convert the second-order system (4.23) into a first-order system by introducing

the functions
v = o), (k=0,....,n—1).

Therefore, the system (4.23) can be rewritten as

p'=qlx,p) (4.55)

where the 2n vectors p and ¢ are given by

P = (¢07 ¢17"'7 ¢n—17 77Z)07 77Z)17"'7 77Z)7”L—1)T )

o
(o

1 n—1
502%—72(17]‘0%4-6?;0@)
q= 0=
B 5 1 n—1
Biior— = ) (Fiavi + Gi19))
1]‘:0
1

Br1’do — Z_: (Fj n1 5 + G ne1 05)

U1

Let x = (o, ..., qbn_l)T, denote the solution of the boundary-value problem
(4.23), (4.37) — (4.40). If we knew the initial conditions that x and x' satisfy at
x = 0, then we would only require a numerical method to solve one initial-value
problem, given by (4.55) and these initial conditions, to find an approximation

to x at ¥ = 1. However, this isyo



We can write the boundary conditions (4.37) — (4.40) in vector form as
X'(0) + Dox(0) = s (4.56)

and

X(1)+ Dix(1) = s . (4.57)

Here, the n X n matrices Dy and D are given by

—By—dy,  —dYy .. ~dy_1 o
Do — _d8 1 _5? - d? 1 _d2—1 1
0= . . . . )
L _d8 n—1 _d(lJ n—1 s _ﬂg—l - ng—l n—1 |
and i i
Bo—dyo —dig ... ~dy_1 o
Dy — _d(ln 511_62%1 _d711—11
1= . . . . ?
L _d(lJ n—1 _d% n—-1 - 71—1 - 62711—1 n—1 |
where
ngk = dik - [T(ﬂkH)/taﬂ(ﬂkTH)”x:m (k=0,...,n—1)
and
Cﬁk = dik - [T(ﬂkH)/tan(ﬂkTH)”x:l— (k =0,...,n— 1) .

The n vectors s, and s; are given by
T
sy = (—285A47, 0...., 0)
and
1 T
s1 = (205e™ AT, 0, 0) .

Here, we have employed the usual notation 7 = 3;(0), g} =05;(1) (j =0,...,n-1)
and o = —ik with k and 3; (j = 1,...,n—1) the solutions of the relations (4.26)
and (4.25) respectively.

Now let X, X,,---» X, denote linearly independent solutions of (4.55), and
therefore also linearly independent solutions of the coupled system (4.23). Then,
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as we have already noted, the solution x of the boundary-value problem is given
by

X=ax, teax,+ ... temx,, (4.58)
for some constants ¢; € € (j = 1,...,2n). These constants are chosen so that
X given by (4.58) satisfies the boundary conditions (4.56) and (4.57). There-
fore, substituting (4.58) into (4.56) and (4.57) leaves a matrix equation for the

constants ¢; (j = 1,...,2n), which is given by

Mc=s, (4.59)
where M is a 2n X 2n matrix given by M = [m,, m,, ..., my,,| with the 2n
vectors m; (j =1,...,2n) and s given by

X/(0) + Doy, (0)

V(1) + Do, (1)

and

It
Il

Once (4.59) has been solved, then we can find the value of y, the solution of the
boundary-value problem, at x = 1 and hence calculate the reflection, transmission
and decay coefficients.
All that remains to be done is to find the 2n independent solutions of (4.55).
We shall use a Runge-Kutta method of the form
R
Py — P, = h]Z_%djg;? ,

in which £ is the step size, v = 0, v, = w0 + nh, p ~ p(x,) and

g;? =q (l‘n +7h, p, + Ry 77]‘52?)7 to approximate p(1). These Runge-Kutta
numerical schemes are defined on choosing h, ~; and n;s (j = 1,....R
and s = 1,...,7) and their use is well-documented (see Lambert [29], for ex-

ample). The results we produce in this chapter will be found using the 6th—stage
method (R = 6) given by Fehlberg [19] which is of order 5, that is, accurate
to O(h°). This fifth-order Runge-Kutta procedure uses a corresponding fourth-
order Runge-Kutta procedure for step size control. Fehlberg uses the fact that
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the difference between his 5 -order Runge-Kutta method and the corresponding
th
4

-order method provides an approximation of the leading term of the trunca-

4th

tion error in the -order method. He assumes that if the truncation error is
represented, with sufficient accuracy, by its leading term, then a step size control
can easily be implemented into the 5t order Runge-Kutta procedure. A test is
made to see whether the truncation error, as obtained from the difference be-

tween the 40 and 5tM_order methods, exceeds a certain pre-set tolerable error.

It it does, the step size is halved, the step is recomputed and tested again. On



and parameter values ag = 3 and 7 = 0.1, the functions x and gy (k






Example 4.1
Suppose that a wave of unit amplitude is incident from * = —oco on a talud

whose scaled depth profile is given by

1
Hiz) =1 - 5a* 0<z<1).
This depth profile represents a concave talud. We choose parameter values

060:2,

T=10.5.

(This could represent the physical situation where hg = Ilm, [ =2m, o = \/53_1).
We shall seek approximations to the reflection coefficient of the progressive wave

and the coefficients of the reflected decaying wav



mode at @ = 0 |Rj| calculated using the above tolerances in the Runge-Kutta

method. We can see that both amplitudes of reflection have converged to 6.d.p.

Tolerance | |RY| (6d.p.) | |Ry| (6d.p.)
1072 0.064150 0.006390
10-¢ 0.064150 0.006390
107? 0.064150 0.006390

Table 4.2: Approximations to |R}| and |R}| for the 2-term approximation

when the tolerance in the Runge-Kutta method is 1072,

Now, remember that we wish to compare our results with those given by the
mild-slope equation (MSE) and the modified mild-slope equation (MMSE). We
can either use Chamberlain’s integral equation procedure to do this or use the
Runge-Kutta method given in this chapter. In keeping with the spirit of this
chapter, we use the Runge-Kutta method with a tolerance of 107° to find the

following approximations to the coefficient of the reflected plane wave.
MSE: R} = —0.038531 — 0.0411667 (IR}] = 0.056385)
MMSE: R} = —0.047743 — 0.044376: (|R}] = 0.065181)

These results are accurate to 6.d.p., in the sense that they agree to 6.d.p. with
results given by the Runge-Kutta method with an increased tolerance of 1077,
Now with a 2-term trial approximation, the coefficient of the reflected plane wave

(using a tolerance of 107° in the Runge-Kutta method) is given by
2-term: R} = —0.052240 — 0.037232; .

We shall now investigate the solutions of the initial-value problem (4.55),
(4.60) and (4.61) as we increase the number of terms in the trial approximation.

For the MMSE (that is, the 1-term approximation), the Runge-Kutta method

gives approximations to x (1) and y (1) as
X, (1) =-0898 and  x,(1)=0.209.

Comparing these solutions of the initial-value problem (4.55),(4.60) and (4.61)

with those given in Table 4.1 for the 2-term approximation illustrates that in the
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2-term appro



with the corresponding reflection coefficient given by the 2-term approximation
in the first 2 decimal places.
If we now use the 4-term approximation, then with a tolerance of 107¢ in the

Runge-Kutta method, we find that

(1)~ 0107, x,(1)~0107), y(1)~0(10%, x,1)~O0(0%),

(1)~ 0107, X (1) ~0 0