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Abstract

This dissertation investigates the numerical solution of similarity solution of

the Porous Medium and the Thin Film equations. Scaling transformations are

introduced to reduce the original equations to ordinary di�erential equations.

Self-similar solutions are found for all n > 0 in the case of the Porous Medium

equation, but only for n = 1 in the Thin Film equation. The ordinary di�erential

equations are solved numerically and the numerical results are compared with

the self-similar solutions to verify the accuracy of the numerical schemes used.

The main idea is to �nd a numerical self-similar solution for n > 1 in the Thin

Film equation.
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equations than the original PDE. The importance of similarity solutions lies in

their ease of calculation, the fact that they often act as attractors for the more

general solutions of the PDE.

The examples below show di�erent types of PDEs for which they are invari-

ant under certain groups of transformations [1].

Example 1: Fisher’s equation, given by

ut = uxx + u(1 � u); u 2 C2(1 ; �1 )

plays an important role in the study of mathematical biology and in probability.

It is invariant under:

i. translations in time, t ! t + �

ii. translations in space, x ! x + �

iii. reexions in x, x ! � x

Example 2: The universal heat equation

ut = uxx ; u 2 C2(1 ; �1 )

is invariant under the same transformations as in Example 1, and also the

stretching groups given by

t ! �t;

x ! �
1
2 x;

where � > 0 is arbitrary.

Example 3: The blow-up equation, of the form

ut = uxx + u2; u 2 C2(1 ; �1 )

is used in modelling combustion processes in which materials become hot very

quickly. It is invariant under the action of the same groups as in Example 2,

with an additional stretching group given by

u !
u
�

:
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1.2 Scale Invariance

Scale invariance is a basic idea which originates from the analysis of the conse-

quences of changes of units of measurement on the mathematical form of the laws

of physics. It is viewed as a particular aspect of study of di�erential equations

under groups of transformations [7].

Basically, this type of transformation maps all the variables in the original

di�erential equation (DE) to newly transformed variables by di�erent scaling

parameters for each of the original variables. The DE is then said to be scale-

invariant if the system remains unchanged by the transformations.

1.2.1 Scaling Invariance on an ODE

Suppose a ODE is given by
dy
dx

= F (x; y) : (1.1)

Introduce a mapping from the original system (x; y) to a new system (�x; �y)

by the transformations

�x = �x

and �y = �y (1.2)

where � and � are the scaling parameters.

Substituting (1.2) into equation (1.1), the left-hand side becomes

dy
dx

=
d

�
�y
�

�

d
�

�x
�

�

=
�
�

d�y
d�x

and the right-hand side gives

F (x; y) = F
�

�x
�

;
�y
�

�
:

The new system is therefore

d�y
d�x

=
�
�

F
�

�x
�

;
�y
�

�
:
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The de�nition of invariance is then

�
�

F
�

�x
�

;
�y
�

�
= F (�x; �



and

� =
�y
y

:

Assuming there exists a functional relationship between � and � such that

� = � (� ), self-similar solutions can be found to satisfy the ODE in (1.1), which

is invariant under the transformations in (1.2).

1.3.2 Self-Similarity for a PDE

Making � the subject from (1.4), we have

� =
u

1


�u
1


=
t
�t

=
x

1
�

�x
1
�

De�ne similarity variables to be

� =
u
t 

=
�u
�t 

; (1.5)

� =
x
t �

=
�x
�t �

; (1.6)

which are independent of � and hence scale-invariant under (1.4).

A functional relationship between the similarity variables is assumed to take

the form � = � (� ). We can then �nd self-similar solutions satisfying the ODE,

that is derived by the transformation of the original PDE into the variables �

and � with scaling exponents � and  .

1.4 Outline of Dissertation

In Chapter Two, we look at non-linear di�usion equation and its applications.

An illustration of the method of similarity under scaling transformation to this

equation is presented. A detailed account of the construction of similarity vari-

ables to obtain self-similar solutions are shown for both the Porous Medium

equation, for all n, and the Thin Film equation, in the case of n = 1, with given

initial conditions. We then go on to consider the applications of both di�usion

equations. Furthermore, we develop another approach to solving both equations

by including the time variable in the relationship between the new transformed

variables. This results in scale-invariant but not self-similarity solutions. It

was hoped that when method is run to convergence, within some tolerance, the
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Chapter 2

Non-Linear Di�usion

We focus mainly on non-linear di�usion equations of general form

@u
@t

= (� 1)m @
@x

�
un @2m+1 u

@x2m+1

�
; (2.1)

where un represents the di�usion coe�cient and n > 0 is a di�usion growth



we require

 � 1 = (n + 1)  � (2m + 2) �: (2.5)

To determine  and � we need another equation. Integrating equation (2.1)

over the domain gives

Z b(t )

a(t )

@u
@t

dx =

Z b(t )

a(t )
(� 1)m @

@x

�
un @2m+1 u

@x2m+1

�
dx;

which simpli�es to

d
dt

Z b(t )

a(t )
u dx = (� 1)m

�
un @2m+1 u

@x2m+1

� b(t )

a(t )

:

Taking the boundary conditions at u(a(t)) = u(b(t)) = 0, we have

d
dt

Z b(t )

a(t )
u dx = 0

and therefore Z b(t )

a(t )
u dx = k; (2.6)

where k is a constant. This shows that mass is conserved over the whole domain.

Transforming the integral in (2.6) to the variables (�u; �x; �t), by (1.4), we obtain

Z b(t )

a(t )
�  �u d

�
� � �x

�
= k

�  + �
Z b(t )

a(t )
�u d�x = � 0k:

For (2.6) to be invariant under the transformation (1.4), we require

 + � = 0: (2.7)

Solving (2.5) and (2.7) simultaneously, we �nd that

 =
� 1

n + (2m + 2)

and � =
1

n + (2m + 2)
(2.8)
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By (1.5) and (1.6), the self-similar solutions for non-linear di�usion equations

are of the form

� = � (� )

i.e. u(x; t ) = t  �
� x

t �

�
(2.9)

under the scalings  and � de�ned in (2.8).

2.1 The Porous Medium Equation

In the case when m = 0, equation (2.1) becomes the Porous Medium equation

(PME), a second-order non-linear di�usion equation. It has the form

@u
@t

=
@

@x

�
un @u

@x

�
; (2.10)

where n is as described in equation (2.1), with u = un @u
@x = 0 at the boundaries.

Such problems with zero boundary conditions are degenerate in the sense that

u = 0 is a su�cient boundary condition.

Equation (2.10) has been widely used to model many di�erent applications.

In physical problems, it is used to model the ow in thin saturated region in a

porous medium, the percolation of gas through porous media, the spreading of

thin viscous spreading under gravity over a horizontal plane, and many other

processes [2],[10].

Further applications of the second-order case arise in the modelling of bac-

terial growth on agar plates and in medicine. An example for the latter is the

development of a tumour inside a human body. The tumour gains nutrients and

oxygen for growth by di�usion from already existing vasculature surrounding

them. Thus the size of the tumour is limited by di�usion through a porous

medium [3].

9



Figure 2.1: Evolution of PME at Di�erent Times for a �xed n

The above �gure represents a self-similar solution at three points in time.

The solution at time t0 is transformed onto the solution at a di�erent time, say

at time t1 by the scaling transformation in equation (1.4).

2.1.1 Self-Similar Solutions

From (2.8),  and � for the second-order equation (2.10) are

 =
� 1

(n + 2)
and

� =
1

(n + 2)
: (2.11)

To construct self-similar solutions in the form given in (2.9), we �rst derive

the ODE in terms of the similarity variables � = � (� ) and � , which are de�ned

in (1.5) and (1.6).
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and hence

� �� � ��
d�
d�

=
d
d�

�
� n d�

d�

�

� �
�

� + �
d�
d�

�
=

d
d�

�
� n d�

d�

�

� �
d
d�

(�� ) =
d
d�

�
� n d�

d�

�
; (2.16)

which is a second-order ODE in the function � (� ) with boundary conditions

� = 0 at � = � 1:

In order to solve the ODE, we integrate (2.16) to get

� n d�
d�

= � � (�� ) + C;

where C is an integration constant. Since � = 0 at the boundary, C = 0 and

thus

� n d�
d�

= � � (�� ) :



zero boundary conditions,

� (� ) =

8
<

:

�
An � �n� 2

2

� 1
n �n� 2

2 � An ;

0 �n� 2

2 > A n :

Mapping this back to the original variables u; x and t using the de�nitions in

(1.5) and (1.6) with � and  given by (2.11), we obtain

u(x; t ) =
1

t
1

( n +2)

 

An �
nx2

2(n + 2)t
2

( n +2)

! 1
n

+

; (2.17)

where the notation (:)
1
n
+ indicates that we take the positive solution of the argu-

ment. Equation (2.17) is a self-similar solution of the original PME with u = 0

at the boundaries, for all values of n > 0. The original derivation is due to

Barenblatt[6].



Figure 2.3: Self-Similar Solutions of the original PME when n = 1 at di�erent
times

2.1.2 Non-Self-Similar Solutions

More generally, the equation (2.10) can be solved with � as a function of � and

the time t, giving scale-invariant solutions but not self-similarity. This results

in an additional term to the tranformed left-hand side expressed in (2.12),

@u
@t

=
@(�t  )

@t

= �t  � 1 + t  @�
@t

= �t  � 1 + t 

�
@�
@�

�
d�
dt

+
@�
@t

�

= �t  � 1 + t 

�
@�
@�

�
� �x
t � +1

+
@�
@t

�

= �t  � 1 + t 

�
@�
@�

�
� ��

t
+

@�
@t

�

= �t  � 1 � �t  � 1�
@�
@�

+ t  @�
@t

: (2.18)

The right-hand side has the same transformed expression as in (2.13),

@
@x

�
un @u

@x

�
= t n +  � 2� @

@�

�
� n @�

@�

�
: (2.19)
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Equating (2.18) and (2.19), we have

�t  � 1 � �t  � 1�
@�
@�

+ t  @�
@t

= t n +  � 2� @
@�

�
� n @�

@�

�

t  � 1

�
� � ��

@�
@�

+ t
@�
@t

�
= t n +  � 2� @

@�

�
� n @�

@�

�

� � ��
@�
@�

+ t
@�
@t

= t n +1 � 2� @
@�

�
� n @�

@�

�
: (2.20)

Using (2.11) and that � = �  , and because of (2.15), gives

� �� � ��
@�
@�

+ t
@�
@t

=
@
@�

�
� n @�

@�

�

� �
�

� + �
@�
@�

�
+ t

@�
@t

=
@
@�

�
� n @�

@�

�

� �
@
@�

(�� ) + t
@�
@t

=
@
@�

�
� n @�

@�

�

t
@�
@t

= �
@
@�

(�� ) +
@
@�

�
� n @�

@�

�
; (2.21)

which is a PDE for the function � (�; t ), with chosen domain j� j � 1 and boundary

conditions � = 0. This PDE can be solved numerically.

2.2 The Thin Film Equation

The Thin Film equation (TFE) is a fourth-order non-linear di�usion equation,

given by
@u
@t

= �
@

@x

�
un @3u

@x3

�
; (2.22)

where n is as stated in equation (2.1), and with zero boundary conditions. This

is when m = 1 in equation (2.1). When n = 1, the equation is used to describe

ow in a Hele-Shaw cell. The uid placed between two parallel plates moves

in response to pressure gradients due to surface tension and other externally

imposed forces.

With n = 3, it models the lubrication of a surface tension driven thin viscous

liquid on a horizontal surface with a no-slip condition at the interface. However,

the no-slip condition implies that an in�nite force occurs at the interface; but

this can be avoided by having more realistic models allowing slip, which are of

Navier-type slip condition type [8]. Other applications involve the spreading of

15



uid on textiles and the overow of rainwater over soils.

2.2.1 Self-Similar Solutions

Similarly, we follow the same procedure in �nding self-similar solutions for TFE.

 and � de�ned in (2.8) become

 =
� 1

(n + 4)

and � =
1

(n + 4)
: (2.23)

A similarity solution of the form � = � (� ) is sought, by obtaining an ODE

for � in terms of � . The transformed left-hand side of (2.22) is the same as in

(2.12),
@u
@t

= �t  � 1 � �t  � 1�
d�
d�

(2.24)

To transform the right-hand side, �rst consider

@u
@x

=
@u
@�

d�
d�

@�
@x

= t  d�
d�

1

t �

= t  � � d�
d�

from which,

@2u
@x2

= t  � � d2�
d� 2

@�
@x

= t  � � d2�
d� 2

1

t �

= t  � 2� d2�
d� 2

16



and

@3u
@x3

= t  � 2� d3�
d� 3

@�
@x

= t  � 2� d3�
d� 3

1

t �

= t  � 3� d3�
d� 3

:

Then

�
@

@x

�
un @3u

@x3

�
= �

@�
@x

d
d�

�
� n t n t  � 3� d3�

d� 3

�

= �
1

t �

d
d�

�
� n t n t  � 3� d3�

d� 3

�

= � t n +  � 4� d
d�

�
� n d3�

d� 3

�
: (2.25)

Equating (2.24) with (2.25) gives

�t  � 1 � �t  � 1�
d�
d�

= � t n +  � 4� d
d�

�
� n d3�

d� 3

�

t  � 1

�
� � ��

d�
d�

�
= � t n +  � 4� d

d�

�
� n d3�

d� 3

�

� � ��
d�
d�

= � t n +1 � 4� d
d�

�
� n d3�

d� 3

�
: (2.26)

From (2.23), since � = �  , the power of t in (2.27) becomes

n + 1 � 4� = n + 1 + 4

=

�
� n

(n + 4)
+ 1

�
�

4

(n + 4)

= 0 (2.27)

and hence

� �� � ��
d�
d�

= �
d
d�

�
� n d3�

d� 3

�

� �
�

� + �
d�
d�

�
= �

d
d�

�
� n d3�

d� 3

�

� �
d
d�

(�� ) = �
d
d�

�
� n d3�

d� 3

�
; (2.28)
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To evaluate K 3, we note that

� = 0 at � = � 1

)
u

t
� 1
5

= 0 at
x

t
1
5

= � 1: (2.32)

Substituting (2.32) into (2.31) gives K 3 = 1
120. Hence the self-similar solution

of the original TFE for n = 1 is

u(x; t ) =
1

120t
1
5

�
1 �

x2

t
2
5

� 2

: (2.33)

For values of n > 1, we �nd their approximate solutions from the numerical

schemes presented in the next chapter.

Figure 2.4: Self-Similar Solutions of original TFE when n = 1 at di�erent times

2.2.2 Non-Self-Similar Solutions

We can also �nd the solutions of equation (2.22) with � as a function of � and

t, again giving scale-invariant solutions but not self-similarity. The transformed

expression of the left-hand side in (2.24) now has an extra term,

@u
@t

= �t  � 1 � �t  � 1�
@�
@�

+ t  @�
@t

: (2.34)
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The right-hand side is transformed into the same expression as in (2.25),

�
@

@x

�
un @3u

@x3

�
= � t n +  � 4� @

@�

�
� n @3�

@�3

�
: (2.35)

Equating (2.34) and (2.35), gives

�t  � 1 � �t  � 1�
@�
@�

+ t  @�
@t

= � t n +  � 4� @
@�

�
� n @3�

@�3

�

t  � 1

�
� � ��

@�
@�

+ t
@�
@t

�
= � t n +  � 4� @

@�

�
� n @3�

@�3

�

� � ��
@�
@�

+ t
@�
@t

= � t n +1 � 4� @
@�

�
� n @3�

@�3

�
: (2.36)

Deducing from (2.23) that � = �  , and because of (2.27),

� �� � ��
@�
@�

+ t
@�
@t

= �
@
@�

�
� n @3�

@�3

�

� �
�

� + �
@�
@�

�
+ t

@�
@t

= �
@
@�

�
� n @3�

@�3

�

� �
@
@�

(�� ) + t
@�
@t

= �
@
@�

�
� n @3�

@�3

�

� �
@
@�

(�� ) +
@
@�

�
� n @3�

@�3

�
= � t

@�
@t

; (2.37)

which is a PDE in the function � (�; t ). We choose the domain to be j� j � 1 with

zero boundary conditions. The numerical solutions are presented in chapter

Four.

20



Chapter 3

Numerical Results for the

Porous Medium Equation

In this chapter, we compare numerical results obtained for PME with the sim-

ilarity solutions found earlier, in order to check the accuracy of the numerical

methods, in approximating nonlinear di�usion.

3.1 Self-Similar Solutions

Discretising equation (2.16) using a �nite di�erence method, we have

� �
�

(i + 1)� i +1 � (i � 1)� i � 1

2h

�

=

�
� i +1 + � i

2

� n �
� i +1 � � i

h2

�
�

�
� i + � i � 1

2

� n �
� i � � i � 1

h2

�

) 0 = �
�

(i + 1)� i +1 � (i � 1)� i � 1

2h

�
+

�
� i +1 + � i

2

� n �
� i +1 � � i

h2

�
�

�
� i + � i � 1

2

� n �
� i � � i � 1

h2

�

where h is the distance between adjacent points in � space.

The system can be represented in a matrix form

A(� )� = 0; (3.1)
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where � = [� 1; � 2; :::; � N � 1]T with known boundary conditions � 0 = 0 and � N = 0,

and N represents the number of uniformly spaced intervals between � 1 < � < 1.

From the matrix system in (3.1), � is non-unique and one of the solutions

for � is zero. To remedy this, we use symmetry and solve on 0 < � < 1 instead

with boundary conditions �



choosing two initial values at � = 0 such that the solutions of � at the boundary

� = 1 will result in a positive � and a negative � at the last point.

For n = 1, the value of � at � = 0 is the same regardless of the number of

intervals between � = 1 and � = 0 for a �xed value of tolerance. This is because

the solution is a quadratic. The numerical method used, Runga-Kutta of order

2, is exact for approximating a quadratic curve.

Figure 3.1: Numerical Solution of PME for n = 1 at di�erent tolerances

Comparing two di�erent tolerance values of 0.01 and 0.001, we see that

� = 0:1580 and � = 0:1664 respectively.

Figure 3.2: Numerical Solution of PME for n = 1 for di�erent number of intervals

Comparing two di�erent numbers of intervals, 100 and 200, the values of �

is the same.
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For n = 2, the values of � at � = 0 are similar for di�erent tolerances but

�xed number of intervals. As the number of intervals increases, � converges to

a value of 0.50. Comparing two di�erent tolerance values of 0.01 and 0.001,

Figure 3.3: Numerical Solution of PME for n = 2 at di�erent tolerances

� = 0:4881916 and � = 0:4881922 respectively.

Figure 3.4: Numerical Solution of PME for n = 2 for di�erent number of intervals

Comparing two di�erent numbers of intervals of 100 and 200, the values of

� are converging.
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Similarly, for n = 3, the values of � at � = 0 are almost the same for di�erent

tolerances but �xed number of intervals. � converges to a value of 0.67 as we

increase the number of intervals. Comparing two di�erent tolerance values of

Figure 3.5: Numerical Solution of PME for n = 3 at di�erent tolerances

0.01 and 0.001, � = 0:66814 and � = 0:66811 respectively.

Figure 3.6: Numerical Solution of PME for n = 3 for di�erent number of intervals

Comparing two di�erent numbers of intervals of 100 and 200, the values of

� are converging.
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Another approach of obtaining the solution is by solving (2.21) and run it to

convergence, which we look at next.

3.2 Another Approach via Non-Self-Similar Equation

We discretise the equation (2.21) to give

� k+1 = � k +
�t
t

�
�

�
(i + 1)� i +1 � (i � 1)� i � 1

2h

��

+
�t
t

��
� i +1 + � i

2

� n �
� i +1 � � i

h2

�
�

�
� i + � i � 1

2

� n �
� i � � i � 1

h2

�� k

; (3.3)

where k represents the time level and �t is the local distance between time steps.

We regard (3.3) as an interation and perform two iterative methods, Jacobi and

Gauss-Seidel. We run the program for a few time steps for each of n = 1; 2; 3.

The evolutions are shown below:



Figure 3.8: Evolution of Self-Similar Solution of PME for n = 2

method converges about twice as fast as Jacobi does because we use updated

values of � i and � i � 1.
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Figure 3.9: Evolution of Self-Similar Solution of PME for n = 3

We check the results against the exact solutions and they both have the give

same graphs.
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Figure 3.10: Exact and Approximate Solutions for PME for n = 1

3.3 Accuracy

We then investigated the accuracy of the method used in �nding self-similar

solutions by evaluating the sum of the global errors taken at all points for di�er-

ent number of intervals with value of n �xed. The global error is the di�erence

between the exact and the approximate (self-similar) solutions at � i . Table 1

below shows the total error at intervals of 200, 400, and 800. The error can be

No. of Intervals Total Exact Total Approx Total Global Errors

200 112.5393 112.0696 0.4725
400 225.2001 224.7100 0.4913
800 0.0000 0.0000 0.0000

represented graphically as given below:
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Figure 3.11: Exact and Approximate Solutions for PME for n = 2

Figure 3.12: Exact and Approximate Solutions for PME for n = 3
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Figure 3.13: Error Analysis for PME for n = 3
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running it to convergence.
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Figure 4.2: Numerical Solution of TFE at for n = 2

4.2 Another Approach via Non-Self-Similar Equa-

tion

Substituting (4.1) into equation (2.37), we have

� �
@
@�

(�� ) +
@
@�

�
� n @�

@�

�
= � t

@�
@t

: (4.6)

Then we discretise (4.6) and this gives a similar expression with that for equation

(2.21) but with � . Before running the program, the boundary values of � are

determined by linear extrapolation, that is

� 0 = 2� 1 � � 2;

2� n� 1 = � n� 2:

We run the program for a few time steps for each n = 1; 2; 3 using self-similar

solution as initial conditions. The evolutions are shown below:
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Figure 4.3: Numerical Solution of TFE for n = 3

However, when running this program to convergence, that is when � k+1 = � k ,

within some tolerance, we �nd that the numerical solutions were unstable. If we

had more time, we could re�ne the method by using smaller �t.
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Figure 4.4: Evolution of Self-Similar Solution of TFE at n = 1

Figure 4.5: Evolution of Self-Similar Solution of TFE at n = 2
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Figure 4.6: Evolution of Self-Similar Solution of TFE at n = 3
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