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1VARIATIONAL APPROACH IN WEIGHTED SOBOLEV SPACES TO SCATTERING BYUNBOUNDED ROUGH SURFACESSIMON N. CHANDLER-WILDE† AND JOHANNES ELSCHNER‡Abstrat. We onsider the problem of sattering of time harmoni aousti waves by an unbounded sound soft surfaewhih is assumed to lie within a �nite distane of some plane. The paper is onerned with the study of an equivalent variationalformulation of this problem set in a sale of weighted Sobolev spaes. We prove well-posedness of this variational formulation inan energy spae with weights whih extends previous results in the unweighted setting (Chandler-Wilde & Monk, SIAM J MathAnal 37 (2005), 598-618) to more general inhomogeneous terms in the Helmholtz equation. In partiular, in the two-dimensionalase, our approah overs the problem of plane wave inidene, whereas in the 3D ase inident spherial and ylindrial wavesan be treated. As a further appliation of our results we analyse a �nite setion type approximation, whereby the variationalproblem posed on an in�nite layer is approximated by a variational problem on a bounded region.1. Introdution. This paper is onerned with the analysis of problems of sattering by unboundedsurfaes, in partiular with what are termed rough surfae sattering problems in the engineering literature.By the phrase rough surfae, we will denote throughout a surfae whih is a (usually non-loal) perturbationof an in�nite plane surfae suh that the surfae lies within a �nite distane of the original plane. Roughsurfae sattering problems in this sense arise frequently in appliations, for example in modeling aousti andeletromagneti wave propagation over outdoor ground and sea surfaes, and have been studied extensivelyin the physis and engineering literature from the points of view of developing e�etive numerial algorithmsor asymptoti or statistial approximation methods (see e.g. Ogilvy [30℄, Voronovih [39℄, Saillard & Sentena[32℄, Warnik & Chew [40℄, DeSanto [18℄, and Elfouhaily and Guerin [19℄).Despite this extensive pratial interest, relatively little mathematial analysis of these problems hasbeen arried out. In partiular, only in the last four years have the �rst results been obtained establishingwell-posedness for three-dimensional rough surfae sattering problems, using integral equation methods (seeChandler-Wilde, Heinemeyer & Potthast [13, 14℄, Thomas [36℄) or variational formulations (see Chandler-Wilde, Monk & Thomas [11, 15℄, Thomas [36℄). The variational approah proposed in [11℄ for the soundsoft aousti problem leads to expliit bounds on the solution in terms of the data and applies to a rathergeneral lass of non-smooth unbounded surfaes. The approah in [11℄ is extended to more general aoustisattering problems in [36℄, inluding problems of sattering by impedane surfaes and by inhomogeneouslayers (and see [15℄).In ontrast to the general ase of a non-loally perturbed plane surfae, there is already a vast literatureon the variational approah applied to periodi di�rative strutures (di�ration gratings) or to loallyperturbed plane satterers; see, e.g., Kirsh [25℄, Bonnet-Bendhia & Starling [6℄, Elshner & Shmidt [20℄,Bao & Dobson [5℄, Elshner, Hinder, Penzel & Shmidt [21℄, Ammari, Bao & Wood [1℄, and Elshner &Yamamoto [22℄. The assumption made in all of these papers leads to a variational problem over a boundedregion, so that ompat imbedding arguments an be applied and the sesquilinear form that arises satis�es aGårding inequality whih simpli�es the mathematial arguments onsiderably ompared to the ases studiedin [11℄, [15℄ and [36℄.In this paper we will rigorously analyze time harmoni aousti sattering, seeking to solve the Helmholtzequation with wave number k > 0,
∆u+ k2u = g ,in the perturbed half-plane or half-spae D ⊂ Rn, n = 2, 3. The sattering surfae Γ := ∂D is assumed to liewithin a �nite distane of some plane; for example it may be the graph of an arbitrary bounded ontinuous
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funtion. While the methods we use and results we derive an be adapted to other boundary onditions, tokeep things spei� and to make use of earlier results [11, 15℄, we will restrit our attention to the simplestase when a homogeneous Dirihlet boundary ondition u = 0 holds on Γ. The problem formulation isompleted by a suitable radiation ondition, expressing that the wave sattered by the surfae must radiateaway from the surfae.This paper is losest in its results to Chandler-Wilde & Monk [11℄, who studied the same Dirihletsattering problem. Following [11℄, we introdue an equivalent variational formulation of this problem setin an in�nite layer S0 of �nite thikness between the surfae Γ and some plane Γ0 lying above that surfaeon whih the solution is required to satisfy a non-loal boundary ondition involving the exat Dirihletto Neumann map T . This ondition is often used in a formal manner in the rough surfae satteringliterature (e.g. [18℄), that, above the rough surfae Γ and the support of g, the solution an be representedin integral form as a superposition of upward traveling and evanesent plane waves. This radiation onditionis equivalent to the upward propagating radiation ondition proposed for two-dimensional rough surfaesattering problems in [10℄, and has reently been analyzed arefully in the 2D ase by Arens and Hohage[4℄. Arens and Hohage also propose a further equivalent radiation ondition (a `pole ondition').In Setions 2 and 3 we formulate the boundary value problem and its variational formulation preisely,and give the details about our assumptions on D and about the radiation ondition we impose. Setion 3 isalso devoted to new ontinuity properties of the DtN map T in weighted Sobolev spaes on Γ0.In Setion 4 we study the well-posedness of the variational formulation in an energy spae with weightswhih deay or inrease polynomially as a funtion of radial distane within the layer S0. Our main result,Theorem 4.1, is to show, for a range of inreasing and dereasing weights, that the problem is well-posedin the weighted spae setting if and only if it is well-posed in the unweighted spae setting. This resultdepends on tehnial estimates of the ommutator of the DtN map T and the operation



where en denotes the unit vetor in diretion xn. Condition (2.2) is satis�ed if Γ is the graph of a ontinuousfuntion, but also allows more general domains.We now introdue weighted L2 and Sobolev spaes. For ̺ ∈ R, l ∈ N and a domain G ⊂ Rn, de�ne theHilbert spaes
L2

%(G) := (1 + x2)−%/2L2(G) , H l
%(G) := (1 + x2)−%/2H l(G) ,equipped with the orresponding anonial norm and salar produt. The spae Vh,% is then de�ned, for
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Remark 2.2. We note (and this is important in our later appliations) that there is a degree of arbi-trariness in our radiation onditions (2.4) and (2.5). By this we mean that one ould replae xn in (2.4) by
xn − c, for any c > 0 (in fat for any c ∈ R suh that supp g ⊂ S̄c and Uc ⊂ D); the orresponding hangeto (2.5) would be to replae



3. The Dirihlet to Neumann Map and Variational Formulation. We now onsider a variationalformulation in weighted Sobolev spaes of the above boundary value problem, whih involves the Dirihlet-to-Neumann operator on the arti�al boundary Γ0. As in [11℄ for ̺ = 0, there exist ontinuous traeoperators
γ− : V% → H1/2

% (Γ0) , γ+ : H1
%(U0\Ūh) → H1/2

% (Γ0) , h > 0 .Moreover, if u0 ∈ C∞
0 (Γ0) and u is given by giv



Note that this sesquilinear form is well-de�ned and ontinuous on V% × V−% for |̺| < 1 as a onsequene ofLemma 3.3 with s = 1/2.The variational formulation (V). Given g ∈ L2
%(S0), |̺| < 1, �nd u ∈ V% suh that

B(u, v) = −(g, v) , ∀v ∈ V−% . (3.4)As in [11℄, the equivalene of (BVP) and (V) follows from the following weighted version of Lemma 3.2in that paper.Lemma 3.4. Let |̺| < 1.(i) If (2.4) holds with u0 ∈ H1/2
% (Γ0), then u ∈ H1

%(U0\ ¯



Proof for ̺ 6= 0. Introdue equivalent norms ‖u‖L2
̺

= ‖(a2 + x2)%/2u‖L2 with parameter a > 0 and modifythe norm (2.3) in V% orrespondingly. We will hoose a > 0 su�iently large, and set, for u ∈ V%, ϕ ∈ V−%,
v = (a2 + x2)%/2u ∈ V0 , ψ = (a2 + x2)−%/2ϕ ∈ V0 .Then we obtain from (3.3)

B(u, ϕ) = B(v, ψ) +K(v, ψ) , (4.1)where K = K1 +K2 with
K1(v, ψ) = (∇(a2 + x2)−%/2v,∇(a2 + x2)%/2ψ) − (∇v,∇ψ)

= (v∇(a2 + x2)−%/2, ψ∇(a2 + x2)%/2 + (∇v, ψ(a2 + x2)−%/2∇(a2 + x2)%/2)

+ (v(a2 + x2)%/2∇(a2 + x2)−%/2,∇ψ)

(4.2)and
K2(v, ψ) =

∫
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{

(a2 + x2)%/2ψ̄ T



and sine (f. [11℄)
‖γ−v‖L2(Γ0) ≤ k−1/2|||γ−v|||H1/2(Γ0) ≤ k−1/2|||v|||V0 ,(4.5) implies that

|K2(v, ψ)| ≤ c(̺)√
ka

|||v|||V0|||ψ|||V0 .Thus we have, for ka ≥ 1 and |̺| < 1,
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|||v|||V0|||ψ|||V0 ≤ |̺| + c(̺)√
ka

|||v|||V0|||ψ|||V0 ,so that ‖K0‖ ≤ (|̺| + c(̺))/
√
ka. Taking the bound

‖B−1
0 ‖ ≤ γ := 1 +

√
2κ(κ+ 1)2from [11, Thm. 4.1℄ and using (4.6), we obtain the norm estimate

‖B−1
% ‖ ≤ 2γ, (4.7)provided that

‖K0‖ ≤ (|̺| + c(̺))/
√
ka ≤ 1

2γ
≤ 1

2
‖B−1

0 ‖,whih holds for a ≥ 4γ2(|̺| + c(̺))2/k. Sine (V) written in operator form is the equation B%u = g̃, where
g̃ ∈ V ∗

−% is de�ned by g̃(v) = (g, v), v ∈ V−%, this implies that the solution u of (V) satis�es
|||u|||V̺ ≤ 2γ|||g̃|||V ∗

−̺
≤ 2γk−1|||g|||L2

̺(S0), (4.8)provided ka ≥ max(1, 4γ2(|̺| + c(̺))2).5. Appliations.5.1. Plane Wave Inidene, Di�ration Gratings, and Other Sattering Problems. As anappliation of Theorem 4.1, the problem of plane wave inidene in the 2D ase (n = 2) an be treated.That is, it an be shown, in appropriate funtion spaes, that the sattering problem for plane wave inidenehas exatly one solution in 2D (for a brief disussion of what goes wrong in the 3D ase, see Remark 5.5below, and see Remark 5.6 for details of 3D sattering problems whih an be takled by Theorem 4.1). Theinident plane wave has the form
vin(x) = exp(ik[sin θ x1 − cos θ x2]) ,where θ is the angle of inidene, with |θ| < π/2. In this problem we look for the total �eld v = vsc + vin,

vsc being the unknown sattered �eld, suh that
(∆ + k2)v = 0 in D , v = 0 on Γ , (5.1)and vsc satis�es an appropriate radiation ondition.This 2D rough surfae sattering problem with plane wave inidene has been treated before, by integralequation methods, in [17℄ where it is shown that there exists exatly one solution v ∈ C2(D) ∩ C(D̄) suhthat v is bounded in Sh, for every h > 0, and vsc satis�es the radiation ondition in the form (2.5) (termedthe upwards propagating radiation ondition (UPRC) in [17℄). However, the proof in [17℄ is only for the asewhere ∂D is the graph of a su�iently smooth (C1,1) funtion (this, or at least a restrition to Lyapunovsurfaes, is an essential restrition due to the ompatness arguments in the exist.2801 0 Tlrestritien



this setion we



and suh that vsc := v − vin satis�es the Rayleigh expansion radiation ondition, that
vsc(x) =

∑

m∈Z

um exp(ik[αmx1 + βmx2]), x ∈ U0, (5.3)where the um are omplex onstants, αm := sin θ + 2πm/(kA), and
βm :=

{ √

1 − α2
m, |αm| ≤ 1,

i
√

α2
m − 1, |αm| > 1.It is shown in [22℄ that (DGPW) has exatly one solution in the ase that ∂D is the graph of an (A-periodi) Lipshitz funtion, by extending well-known arguments (see e.g. [25℄), whih apply in the asewhen ∂D is the graph of a smooth funtion, to the non-smooth Lipshitz ase. The following orollary ofTheorem 5.1 extends that result further to the muh more general ase where ∂D is only required to satisfy(2.1), (2.2), and (5.2).Corollary 5.2. Suppose that (5.2) holds. Then (DGPW) has exatly one solution, and this is theunique solution of (PW).Proof. Suppose that v



Proof. It is almost immediate from the observations immediately above the theorem that if v satis�es(PWSC) then u, de�ned by (5.5), satis�es the above boundary value problem. The only di�ulty is to showthe radiation ondition. To see this we note that vsc satis�es the radiation ondition (2.5), from whih itfollows (see [9℄ and f. Remark 2.2) that vsc satis�es (2.5) with Γ0 replaed with Γc, for all c > 0, in partiularwith c = −b. Sine u = vsc in Uc it is immediate that v satis�es (2.5) with Γ0 replaed by Γ−b, whih isequivalent (see Remark 2.2) to (2.4) with x2 replaed by x2 + b.We next observe that it follows from Theorem 4.1 that the boundary value problem for u has exatlyone solution (u satis�es exatly a boundary value problem of the form of Setion 2 after vertial translationof the axes by a distane |b|). The theorem is thus proved if we an show that this solution satis�es that
u|Sh

∈ V∞
h , for every h > 0, and the bound |||u|Sh

|||V ∞

h
≤



where G ∈ V ∗
−% is de�ned by

G(w) =

∫

Γ0

γ−w̄

(

∂vin

∂x2
+ Tγ−v

in

)

ds(x) , w ∈ V−% . (5.8)The restrition to the range ̺ < −1/2 arises sine vin ∈ V% for ̺ < −1/2 but not for ̺ = 1/2. Having solvedthis variational problem to determine v|S0 , v is determined throughout D through (2.5) satis�ed by vsc. Ofourse this variational formulation is well-posed, by Theorem 4.1.Remark 5.5. The above results show that the problem of plane wave inidene is well posed in the 2Dase. In the 3D ase it seems to us likely that a solution to the problem of plane wave inidene does notexist for every hoie of domain D satisfying (2.1) and (2.2). Certainly, the methods of argument above donot extend to the 3D ase, for, in the 3D ase, gP in Theorem 5.3 is in L2
%(D) only for ̺ < −1, and Ggiven by (5.8) is in V ∗

−% only for ̺ < −1, so that Theorem 4.1 does not apply. Further, even the formulationof the 3D plane wave problem appears problemati in 3D. Preisely, just as the radiation ondition (2.4)does not extend to a bounded linear funtional on H1/2
% (Γ0) for ̺ < −1, it does not extend to a boundedlinear funtional on L∞(Γ0) (whih would require that the integral in (2.5) be absolutely onvergent for every

u0 ∈ L∞(Γ0), whih is true in 2D but not in 3D, as a onsequene of the asymptotis (2.8)). Thus it iswh



where the onstants A and B are hosen to ensure that ṽin ∈ C1(R3) (again this is possible provided
ǫ is hosen su�iently small). Then ṽin ∈ H2

loc(R
3) with (∆ + k2)vin = gC, where gC(x) := Ak2,

√

x2
1 + (x3 −H)2 < ǫ, gC(x) := 0, otherwise. We observe that gS is ompatly supported so that gS ∈ L2

%(D)for every ̺ ∈ R. Further, it is an easy alulation to see that gC ∈ L2
%(D) for ̺ < −1/2,



expliitly V (R)
% denotes the ompletion of {u|

S
(R)
0

: u ∈ C∞
0 (D(R))} in the norm
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=

(
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. (5.12)We remark, as is easily seen from Lemma 2.1, that the norms ‖ · ‖
V

(R)
̺

, ̺ ∈ R, are equivalent sine S(R)
0 isbounded, so that, as linear spaes, for ̺ ∈ R, V (R)

% = V (R) := V
(R)
0 . The approximating variational problemis the following: �nd u(R) ∈ V (R) suh that

B(R)(u(R), v) = −(g, v) , ∀v ∈ V (R) . (5.13)Here B(R) is the ontinuous sesquilinear form on V (R) ×V (R) de�ned by (3.3) with D replaed by D(R), i.e.de�ned by
B(R)(u, v) :=

∫

S
(R)
0

(∇u · ∇v̄ − k2uv̄) dx +

∫

Γ
(R)
0

γ−v̄ T γ−u ds(x) , (5.14)where Γ
(R)
0 := S

(R)
0 ∩ Γ0 (see Remark 3.6 for the interpretation of γ− in this ase).Making the observation that we an view V

(R)
% as a losed subspae of V% (the elements of V (R)

% beomeelements of V% if we extend them by zero from S
(R)
0 to S0), the analysis of the error in approximating u by

u(R) follows the usual pattern for analysing the Galerkin method for variational problems via a generalizedCéa's lemma. Preisely, if ũ ∈ V (R) ⊂ V%, then, for v ∈ V (R), applying (5.11),
B(R)(ũ, v) = B(ũ, v) = B(ũ− u, v) − (g, v) .Subtrating this equation from (5.13) we see that
B(R)(ũ− u(R), v) = B(ũ− u, v) , ∀v ∈ V (R) . (5.15)Now reall from Setion 4 that B% : V% → V ∗

−% is our notation for the bounded linear operator



onstants dependent only on ̺ and |b|,
‖ũ− u‖V̺1

= ‖(1 − χR)u‖V̺1

≤ c2

(

∫

S̃R
0

(1 + x2)%1



Theorem 6.1. For ka ≥ 1 and |̺| < 1, the ommutator Ca de�ned in (6.3) has norm ≤ c(̺)
√

k/a on
L2(Rm).It is enough to onsider ̺ ∈ (0, 1) sine the ase of negative ̺ then follows by duality (with respet tothe salar produt on L2(Rm)). We split the symbol ta as

ta = t(0) + t(1) =: χ(|ξ|) ta(ξ) + (1



with b% := F (1 + x2)−%/2. Here the integral in (6.14) is well de�ned sine Fu is rapidly dereasing and
b% ∈ L1(Rm) for ̺ > 0 (see the next lemma), and we have used the relation F (1 + x2)−%/2v = b% ∗ Fv for afuntion v of rapid deay, with ∗ denoting onvolution.Lemma 6.4. For any ̺ > 0, the funtions b% and |ξ| ∇ξb% are rapidly dereasing as |ξ| → ∞ and belongto L1(Rm). For the proof of this, we refer to [29, Chap. 8.1℄; see also [34, Chap. 5.3℄.Proof of Theorem 6.2 (i). From (6.14) and Lemma 6.3,

‖N̂Fu‖L2(Rm) ≤
∥

∥

∥

∥

∫
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|b%(ξ − η)| |ξ − η| sup
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where ϕ is a smooth funtion with somewhat larger support and ϕψ = ψ.Let �rst m = 1. Then (6.20) follows for ̺ ∈





By taking Fourier transform, the uniform boundedness of (6.27) is equivalent to the estimates
‖m(xn, ξ) v‖H̺(Rm) ≤ c(h, ̺)‖v‖H̺(Rm) , v ∈ C∞

0 (Rm) , xn ∈ (0, h) , (6.29)where m(xn, ξ) = exp(−xnt(ξ)). Consider a deomposition t = t(0) + t(1) as in (6.5), with a = 1, t(0) = χt,
t(1) = (1−χ)t and a ut-o� funtion χ vanishing near |ξ| = k, so that t(0) is a smooth symbol. We
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