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is described in detail in Section 3 below. There are two boundary conditions:

a no-ux condition at the ice divide (at x = 0) and zero ice thickness at the

moving front, i.e.

@h
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= 0 at x = 0 ; h = 0 at x = b(t): (2)
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Z b( t )

0
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and has the following property, to be referred to later. Di�erentiating eq. (3)

with respect to t using Leibnitz' integral rule gives
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Sinceh = 0 at x = b(t) the second term is zero. Substituting eq. (1) into eq. (5)

results in
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Use of the boundary conditions, eq. (2), again forces the �rst term to be zero,

since the ice ow is zero at the ice divide. This leaves the rate of change of the

total ice over the domain as

_� =
Z b( t )

0
m(x)dx: (7)

As a result any change in the total ice over the whole glacier is due solely to the

source term in eq. (7), i.e. the rate of change of global ice thickness equates to

the net accumulation/ablation over the whole glacier.

3 Di�usive Velocity at the Glacier Front

The di�usive ow velocity of glaciers ( u(x; t ) in eq. (1)) is typically dominated



movement of the glacier front generated by this di�usive ow velocity is assessed.

Under the shallow ice approximation the di�usive velocity u(x; t ) in eq. (1)

can be written as

u(x; t ) = cf h(x; t )gn +1 sn
x ; (8)

(see e.g. [9]) under the assumption that temperature and density remain constant

throughout the glacier, where c is a negative constant. The surface elevation

s(x



where the function g(x; t ) > 0 is �nite and has a �nite x
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3.2 Introducing topography

Removing the assumption that the bed of the glacier is at, the surface elevation

is a summation of the bed and ice components

s(x; t ) = z(x) + h(x; t ); (19)

wherez(x) represents the topography under the glacier. Withn = 3 the di�usive

velocity in eq. (8) may then be written as

u(x; t ) = cf h(x; t )g4 (f z(x) + h(x; t )gx )3 (20)

= cz3
x f h(x; t )g4 + 3cz2

x f h(x; t )g4hx + 3czx f h(x; t )g4h2
x + cf h(x; t )g4h3

x :

(21)

The last term in eq. (21) is the same as the single term in the at bed scenario,

eq. (9) with n = 3. Expressing the terms in eq. (21) in the form used in eq. (10)

gives

u(x; t ) = c(zx )f h(x; t )g4 +
3c
5

(zx )2 �
f h(x; t )g5�

x +
c
3

zx
��

f h(x; t )g3�
x

	 2

+
9c

343

n�
f h(x; t )g7=3

�

x

o3
: (22)

Substituting for h from eq. (11),
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the remaining three terms individually, leaves
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Each term separately yields a di�erent critical value of � , namely � c =

1=5; 1=3 and 3=7 for each term respectively. However, since� cannot go below

any of these values without encountering an in�nite velocity (see section 3.1),

the lower limit for �











Physical Parameters

n = 3 Flow-law exponent

A = 10 � 16(P a) � 3a� 1 Flow-law parameter

g = 9 :81ms� 2 Acceleration of gravity

� = 910kgm� 3 Ice density

c = � 2Agn � n =(n + 2) Constant Parameter

 = 0 :0005 Scale of accumulation rate



state solution is greater than the initial boundary position and the overall motion

is that of an advance. Figure 2a) demonstrates an overall increase in the amount

of ice in the domain, along with movement of the front towards the steady

state boundary bss =
p

1:5. With � = 3=7 there is an initial di�usive velocity
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corresponding to the source term only, which is

m(x) = min f 0:5;  (� � x)g; (47)

The initial pro�le of ice thickness is therefore

h0(x) = � t � min f 0:5;  (� � x)g (48)

with



The physical parameters are provided in table 2 along with the numerical data.

For direct comparison with the results in [7] the model uses 16 grid points,

initially spaced evenly. This allows for a time step of 2a, up to a �nal time

of 30000a. The calculation takes less than �ve seconds to run on a standard

desktop.

For such a radially symmetric problem the results of the one-dimensional

owline method may be presented as a circle which allows for ease of comparison

with the two-dimensional data.

The numerical solutions to the experiment given in [7] are traditional �xed grid

methods on evenly spaced grids. This means that they requiresome form of

extrapolation or interpolation to �nd the boundary locatio n as the boundary

generally falls between two grid points. As a result the �xed grid methods on a

regular two-dimensional rectangular grid, such as those presented, do not return

a perfect circle due to the location of the grid points, as shown in �g. 4a). This

is not an issue with radial owline methods such as the one used here, which

when rotated naturally give a circle (see �g. 4b)).

A better comparison is a direct comparison between owline models. The

moving mesh method is able to get signi�cantly closer to the exact ice thickness

pro�le than the equivalent �xed grid method in Figure 4c), es pecially near to

the moving front. In Figure 4d) the di�usive velocity in stea dy state is similar

in the two approaches, the main di�erence again arising at the boundary where

the di�usive velocity can be explicitly calculated in the moving mesh approach.

The �xed grid schemes require interpolation to calculate this value.

Expressing these results in table 3 shows that the CMF movingmesh

solution is able to get much closer to the exact boundary position than the

average �xed grid solution, whilst the thickness at the ice divide (where x = 0)

is slightly higher than both the �xed grid and exact solution s.
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8 Data Assimilation

While numerical models of ice sheets provide a good representation of the

dynamical ow, uncertainties in the initial input data lead to errors as the

simulation evolves. Moreover, observations describing the glacier system are

incomplete and contain inaccuracies. Using data assimilation the two can be

combined to gain a best representation of the true state of the ice sheet.

Here we employ a sequential assimilation approach, where the model is

evolved from a-priori initial estimates until observations are available. The

model prediction of the variables, denotedzf , is then corrected by a weighted

di�erence between the observationsy and the predicted observationsCz f to

obtain the analysis za



Value Quantity

z Vector containing the unknown model

variables

y Vector of observations

a Superscript denoting the 'analysis', or best

guess solution

f Superscript denoting the prior solution,

taken from the model

C Observation operator mapping observations

to the model space

K = BC T (CBC T + R ) � 1 Correction, or Gain Matrix

B Background error covariance matrix

R Observation error covariance matrix

Table 4: Data Assimilation variables

solution are applied and an assimilation step is performed.This procedure is

known as atwin experiment. The state vector represents all the unknown values

of the ice thickness,z = f H i gN
i =1 .

The observations are subject to random noise,y = Cz a + e, where e �

N (0; � 2
o) to simulate observation errors. Each observation is assumed independent

of the others, so the covariance between them is zero andR = � 2
o I . Since the

observations are direct, linear interpolation is used to calculate the predicted

observations for the matrix C. We assume that the observations of ice thickness

are within
p

30m of the truth, i.e. � 2
o = 30.

The choice of the background error covariance matrixB is one of the most

critical aspects of any data assimilation scheme, primarily representing the

covariance relationship between the variables, although it also acts to spread

information between variables. For �xed grid methods a typical correlation

function between variablesi and j to characterise the background errors is the
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The ice thickness at the divide (�g. 6(b)) is corrected at the time of assimilation,
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noted that information is implicitly transfered through fu rther iterations which



[8] D. Partridge and M. J. Baines. A moving mesh approach to anice sheet

model.


	Introduction
	Shallow Ice Approximation
	Diffusive Velocity at the Glacier Front
	Without topography
	Introducing topography

	Conservation of Mass Fractions (CMF)
	The Deformation Velocity
	The Net Velocity at the Glacier Front
	Movement of the Glacial Domain
	The Ice Thickness Profile

	A finite-difference algorithm
	The Discrete Diffusive Velocity at the Glacier Front

	Testing the Model
	European Ice Sheet Modelling INiTiative
	Data Assimilation
	Experimental Design
	Observing the boundary
	Results
	New Results

	Discussion

