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Abstract

In the numerical solution of partial differential equations, by finite methods,
greater efficiency can be obtained if the geometry of the grid is determined by
the solution. Many techniques for adapting the grid to the numerical solution it
supports, have been proposed. One such scheme for convection equations in one
dimension is considered here, and its application to convection-diffusion problems

is investigated.
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Notation

Ry positive real numbers

ul! finite difference approximation of u(x;,t,)
(A o
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The subject of this dissertation is adaptive finite difference schemes, for the nu-
merical solution of partial differential equations involving convection. A scheme is
said to be adaptive if the underlying discretisation mesh (grid) undergoes changes

in geometry, in response to the numerical solution it supports.



addition to convection. An attempt is made to modify the scheme presented in
Chapter 3, to provide solutions to the new problem. In addition, the solution
of this test problem contains a steep, moving front which the grid is required to
track.

Conclusions drawn from the numerical results contained in Chapter 4 lead to

further modifications to the scheme, which are considered in Chapter 5.



The modelling of partial differential equations (PDEs) which involve dominant
convection terms, has long been recognised to pose significant problems for nu-
merical solution methods. For instance, first order upwind schemes provide some
desirable properties : they preserve monotonicity of the solution and give rea-
sonably accurate phase speed. However, for these schemes, numerical diffusion is
severe. This is demonstrated in 1.1, which shows how the first order upwind

scheme produces unwanted smearing in the solution. The initial data is shown in
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and represent a form of truncation error for the scheme. It is the largest of these
terms which will be of interest here.

There is a slight subtlety involved in obtaining the modified equation [9]. This
occurs when the high order time and mixed derivatives are to be eliminated. It

is not valid to use the original differential equation for this purpose, which is the
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which will be followed in the remainder of this dissertation.

Finally, there is an approach to the problem of numerical diffusion, which
forms a natural complement to that of adaptive grids. This is the
velocitities introduced by Smolarkiewicz [8] and Margolin [6]. Here the diffusion

term of the modified equation is re-written as an extra convective term. The



By imposing velocities onto grid nodes, which hold solution values, we are now
attempting to solve the differential equation within a moving frame of reference.
(The term is here to be read as .) It is impor-
tant to consider how the form of the equation is changed, when its independent

variables are transformed to those of the moving frame.



differential equations in the time variable. Then this system is discretised and
solved using some time stepping procedure. This is the approach of the

. It is in the first of these stages that the transformation to the moving frame
occurs. Hence the time transformation equation plays a réle of little importance,

and we may make the convenient choice,

To obtain the transformed differential equation, we require the partial derivatives
of the above coordinate transformation. These are most readily calculated by

means of the Jacobian.

For the coordinate transformation,

the Jacobian is readily seen to be

axy
s

(21)

10



Now consider the differential equation

uy = Lu,
where L is some operator containing space derivatives only. By defining,

w(é, ) = u(x,t)

we obtain, by use of the partial derivatives found above,

ou_oidc onor _oi  0coi
ot 9Eot  Or ot Ot Ot O¢
Ju Ot  wx,0u
— = - —— 2.2
T T O w06 (2:2)
And the differential equation in the moving frame is,
ou  x,0u

A

2 _ Ttz 7 2.
or ~ ze0e T L (2:3)

where £ is obtained by a suitable transformation of L.

This equation often appears in a slightly different form. Since x is the velocity
of the moving frame, we may write

Ju | 1 du .. .
use, where the symbol 5 used to denote v O The equation in the moving
T Te

and refer to  as the frame velocity. A further notational shorthand is also in

frame now reads,

(2.4)

Equations (2.3) and (2.4) will play an important part in the remaining chapters.
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2.2 Adaptive Grids

Two broad classes of adaptive grid methods may be identified [3] :
[. Dynamic Rezone Methods

II. Static Rezone Methods

2.2.1 Dynamic Rezone Methods

In grid adaption algorithms of this class, grid node movement is bound to that
of the solution. Individual grid nodes attempt to keep pace with moving features

of the solution.

Example Petzold [7] has proposed the following two stage finite difference
scheme.

The first stage produces grid movement which serves to minimise the time
rate of change of the solution at individual grid nodes. This allows for a larger
time step to be used, without loss of accuracy.

The second stage belongs properly to the static class of methods. It consists
in applying refinements to the grid produced by the first stage, in order to obtain
better resolution in regions of rapid spatial change.

Since this scheme contains elements of the two main classes of adaptive meth-

ods, it is worth considering it in a little more detail.

Petzold’s Scheme The first stage is based on a transformation to a Lagrangian

frame, due to Hyman [4]. This transformation is obtained by finding the frame
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velocity which minimises the quantity

= — 4+ — where

Then (2.4) reads



take to achieve their purpose are highly problem dependent, and must be found
by inspection. This reduces the possibility of the method being incorporated into
a fully automatic package, a standard aim of many methods of this kind. This is
a problem common to many adaptive techniques.

In addition, the grid so far does not necessarily adapt to sharp features of
the solution. A second, grid enhancement, stage is required. Petzold uses a
grid redistribution technique, where nodes are added or deleted from the grid, to
achieve

» +( )2 sz  preset tolerance,

a process which also involves a number of interpolations.

The principal technique of this class of adaptive methods is that of equidistribu-



tion, (),

where = CC ) )

The solution domain is assumed to be the unit interval, 0 1. The monitor
function is chosen to be some quantity related to the spatial variation of the

solution.

To conclude, the Petzold scheme highlights many aspects which are

of importance in designing adaptive methods :

The choice of solution properties to which the grid is to adapt

The manner in which the grid is to be altered

Can it be guaranteed that the grid will remain monotonic, that nodes will

not overtake one another









3.2 Outline of the Masterful Scheme

The scheme is implemented on a grid which subdivides the unit interval into J 41
cells, or subintervals. Such a grid has J internal nodes, whose positions are free to
be varied as the scheme proceeds. The nodes at either end of the interval remain

fixed throughout.

| | x x | ‘
0 =ag xq 9 T; T Ty =1

The Masterful scheme is constructed from a first order upwind scheme and the

node adjusting algorithm [2], combined in the following steps :

Scheme

a) Apply the upwind scheme to current solution, producing a first approxima-

tion to the solution at the next time level

b) Apply the best-fit algorithm to piecewise linear recovered function (see sec-
tion 3.3.2.) This produces new nodal positions, which are better suited to

represent the solution at the new time level
c¢) Use the nodal displacements to obtain a new frame of reference

d) Apply the upwind scheme to the current solution a second time, but this

time the differential equation is solved within the new frame

18



Consider the differential equation

—+ ( )—=0 (34)

The scheme advances the numerical solution of this equation, through one time

interval | according to the following steps :

Let *: =01 + 1 be the finite difference solution of (3.4) obtained by

an upwind step on the data at time level

F= ?—%( ])n( ;o) =1 (35)
it 7. 0
where = Tz
1 aif 7, 0
and noo= e
=3 2

The grid adaption routine is based on a technique for obtaining piecewise constant
best 4 fits, to a piecewise linear continuous function [2]. The motivation for
using this procedure, is the interpretation of upwind schemes. In this

formalism the region is considered to be divided into cells. Each cell contains one
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if Y i 0

where = 2 2
1 if 7, m 0

J=3 J—3

Since both upwind passes preserve monotonicity , and the grid adaption method
maintains the ordering of the nodes, the scheme as a whole is also monotonicity

preserving.

The first two stages of the scheme are straight forward : first obtain a prediction
for the solution at the next time level ; then adjust the nodal positions to give a
better fit to this new solution. The nodal displacements per time step describe the
required velocity of the frame of reference. In the last stage the upwind method

is to be applied in this moving frame.

e



(3.8)

Using (3.7), (3.6) becomes

Y

n+1
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Now ¢ has been chosen such that Eat,nAt)y=j, j=0,1,---,J+1 Vn

By applying linear interpolations to this data, the two quantities in the numerator

of (3.11) are found to have the following approximations,

o1

fn(l’?_%) = J75
", — it
nlpn ) = o4 T
ST = I e e

Details of the calculations involved are given in the Appendix. Combining these

with
n+1 n n+1
7 1:1 Ly L _I_xj—l_x] 1
Tz 2 At At
equation (3.11) reduces to,
o 1
P (%_%) = atl _ il
X x] — wj_l

When this is written into the upwind scheme, the resulting discretisation
differs from that of (2.4) only in the calculation of the space interval. In this new
scheme the grid differences are calculated at the new time level, instead of the
current level. A comparison between the two discretisations is given in the next

section.

3.5 Numerical Results

The schemes derived from equations (2.4) and (2.3) are here referred to as the
first and second discretisations respectively.

A comparison is made between the two discretisations applied to the test

24



problem,

Ju N ou 0
ot "o T
with initial data,
1
u(x,0) = 5%

The measure of the error used here is

;
{;[uu;,tn) - uyﬁ}

J+1

error =

The results, in table 3.1, are typical of the two discretisations. The second form

of discretisation provides a slight improvement in accuracy, in most cases.

Number of Lrror at £ = 0.5 Steps required
free nodes || First discretisation | Second discretisation | First | Second
9 6.53 x 1072 777 < 1073 4 4
19 3.65 x 107? 3.03 x 1072 8 8
39 1.66 x 1072 1.30 x 1073 16 15
59 9.88 x 10™* 7.72 x 107* 24 23
99 5.00 x 1072 3.89 x 107* 40 38

Table 3.1: Error comparison
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So far, the scheme, presented in Chapter 3, has only been applied to problems



smeared over a larger region, and less steep. Since the monotonicity preserving
property of the scheme ensures sharp resolution of steep fronts for (4.1), the
more rounded solutions of (4.2) should cause no extra difficulties. For this reason
a test problem is chosen which possesses a moving front, in addition to the extra
physical diffusion.

Before this problem can be tackled, it is first necessary to obtain a discretisa-
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Fourier stability analysis for a scheme of the form,

provides an indication of the quantities which are of importance to the stability
of the explicit schemes to be considered here :

If = — and = —— then

()
The necessary stability condition involves terms due to diffusion, as well as

convection. For this particular example, 4+ 2 1.

A measure of the relative importance of convection and diffusion processes,

is given by the mesh Peclet number,

= (45)

When the scheme, obtained by the method of Section 4.1.2, is implemented,
some method must be found for selecting the time increment, , to ensure
stability. In general this value will change from step to step. It is a simple matter
to select a value, of , for which the condition above is satisfied by the data at
the current time level. Furthermore, the adaptive scheme has the flexibility to
allow to be changed, if need be, to satisfy the stability requirements of the
second upwind pass. This is due to the fact that, the second pass only uses the
nodal displacements, ©~ , and not the nodal velocities.

However, for the discretisation in Section 4.1.1, the matter is not so simple.

The second upwind pass now involves quantities from the Jacobian of the trans-



displacement. Hence it is no longer valid to change between upwind passes.
Some method must be found to select | from the data at time ,, which will

guarantee the stability of both upwind passes. Such a method might be found




2
If the discretisation measure, ———, is small in comparison to the physical diffu-

sion strength, ,then the scheme models the diffusion process with great accuracy.
This corresponds to a small value of, . and a consequently large value of .. It is
when the value of | is large that convection-diffusion problems pose the greatest
challenge to numerical methods.

For the current test problem, values of were chosen to provide high and low

mesh Peclet numbers.

4.1 contains a graph showing the nodal positions, with time represented
vertically. The thick line shows the position of the centre of the front, as it moves
across the grid. Beneath this, is shown the numerical solution at times = 00,
025, 05, 075, 10. The dotted lines show the corresponding exact solutions.
This identifies two principal defects in the numerical solution.

First, the initial regular grid results in deterioration of the solution during
the first few time steps. As the grid becomes better adapted to the solution,

numerical diffusion decreases and the solution deteriorates much less z)CDGz8uring
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shows that the front effectively leaves the grid at about ¢ = 0.7, and the solution

becomes meaningless.
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to stability of the upwind scheme. A fully implicit, unconditionally stable version

of the scheme was applied to the problems presented in Chapter 4.

5.1.1 Results for Implicit Scheme

The fully implicit scheme requires a tridiagonal matrix to be solved at each time
step. An algorithm employing LU decomposition, with forward and backward
substitutions, is used for this purpose.

Figures 5.1, 5.2 show the result of applying the implicit scheme to the test
problem of Chapter 4. In each case the time step has been selected, by trial and
error, to obtain the most accurate solution.

The implicit scheme appears to offer little, if any, improvement on the explicit

scheme, and will not be considered further.
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moving with the speed of the front. Figure 5.3 shows that, under these conditions,
the nodes eventually move to stable positions around the front. Once the grid
has reached this stable configuration, the solution displays a dramatic reduction
in numerical diffusion. The remaining error, which can be seen in the lower graph

(solution at t = 1.0), is almost entirely a remnant of the early ill-placing of nodes.
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However, the grid is seen to be unable to respond to moving features in the
solution, Section 4.2. This indicates that the scheme is not of the Dynamic
Rezone type.

In Chapter 5, the adaptive grid is given the translational speed of the front
to be tracked. This drift velocity must be found by means independent of the
adaptive scheme. The numerical solution, though much improved, still suffers
deterioration due to numerical diffusion on the initial, ill-adapted grid. This
problem may be remedied by monitoring the goodness of fit of the grid to the
solution. If the grid is not well adapted, other means must be employed to reduce

numerical diffusion and maintain accuracy.
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A similar inequality is obtained for the case p 711 - Combining

these inequalities and using the definition,

J - 7—1
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