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Abstract

As a plane water-wave passes over a fixed underlying bed topography it scatters and

a reflected wave is created travelling in the opposite direction. With knowledge of the

incident wave and underlying bed topography, the reflected wave can be calculated; this

is known as forward scattering.

Taking this reflected data we have formulated the inverse scattering problem, whereby

we use this data in an iterative process working backwards in an effort to approximate

the bed topography. This has been done using both a shallow water, and mild-slope

hypothesis.

It is found that the mild-slope approximation is more accurate and reliable than

the shallow water approximation at estimating the bed profile. Moreover, it is shown

that with a small range of reflected data, R(ν), and some prior knowledge that the bed

profile is mild, the iterative inverse method with the mild-slope approximation is able

to produce an accurate representation of the underlying topography.
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Chapter 1

Introduction

As a plane water-wave passes over a fixed underlying bed topography, part of the incident

wave is reflected back and some is transmitted forward. This process is referred to as

wave scattering.

Linear Wave Scattering by Topography

The governing equations are based on the fluid dynamics of the water, that is by assum-

ing irrotation flow and using linearised boundary conditions for both the free surface

and underlying topography, where we are concerned with motion in the (x, z) plane and

consider the bed profile h = h(x). Here z is chosen to point vertically upwards and x is
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Forward Wave Scattering

The forward wave scattering problem is concerned with finding the amplitude of the

reflected and transmitted waves given that we know the amplitude of the incident wave,

for any specified wave number ν = ω2/g, where ω is the wave frequency and g is the

acceleration due to gravity. In fact only the reflected wave amplitude need be found

since the reflection and transmission coefficients are connected by certain identities.

To find the reflected wave amplitude R(ν) we assume that the bed topography, h(x),

is known and then use the shallow water and mild-slope approximations to formulate

new boundary value problems (and equivalent integral equations). With the solution

to these problems and the use of an appropriate substitution, R(ν) can be evaluated
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Testing

It is not yet known whether the iteration process for solving the inverse scattering

problem, in general, converges. For this reason we shall be testing both the inner and

outer iterations to see if they do in fact converge, and if so whether this limit is the



Chapter 2

Linear Wave Scattering by

Topography

Before looking into the main problem of forward and inverse wave scattering by topog-

raphy we first need to review some established work on wave scattering, as we will be

using this work as a foundation to what follows.

2.1 Equations of Velocity Potential

If we consider the three dimensional case with depth z ,where −h < z < 0 and the bed

profile h = h(x, y), then we can formulate equations for the time-independent velocity

potential φ(x, y, z). By assuming that the flow is irrotational and by using linearised

boundary conditions for the free surface of the water and bed topography, we have

∇2φ = 0 (−h < z < 0)

φz − νφ = 0 (z = 0)

φz + ∇hh · ∇hφ = 0 (z = −h)

 , (2.1)

where ∇h = (∂/∂x, ∂/∂y) and ν = ω2/g with ω being the prescribed angular wave

frequency and g the accelera z7.927 usaue;h
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However we are not concerned with the full three-dimensional problem but a simpler

case in which plane waves propagate parallel to the x-axis. This means we instead have

h = h(x) so that φ = φ(x, z) and therefore separation of variables used on (2.1) gives

φ(x, z) =
(
A0eikx +B0e−ikx

)
Z0(z, h) +

∞∑
n=1

(
Aneknx +Bne−knx

)
Zn(z, h), (2.2)

on an interval where h is constant, for some constants An, Bn (n ≥ 0). Here,

Z0(z, h) = c0coshk(z + h)

Zn(z, h) = cncoskn(z + h) (n ≥ 1)

}
, (2.3)

where k denotes the positive real root of the dispersion relation

ν = ktanhkh (2.4)

and kn are the positive real roots of

ν = −kntanknh, (2.5)

arranged such that kn < kn+1 for n ≥ 1. We also have the coefficents (c0, cn) defined by

c0 = c0(h) = 2
√
k/(2kh+ sinh(2kh)),

cn = cn(h) = 2
√
kn/(2knh+ sin(2knh)), (n ≥ 1),

so that the functions Zn(z, h) (n ≥ 0) form a complete orthonormal set in the region

−h ≤ z ≤ 0. There are also 0) form a complete
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2.1.1 Reflection and Transmission Coefficients

It is with these radiation conditions (2.6) that we can define the reflection and trans-

mission coefficients from the scattering process that we will become more familiar with

later. This is done by first choosing the direction of the incident wave.

For a wave incident from the left only we let A+ = 0 and can define the reflection

and transmission coefficients, R− and T− respectively, by

R− = B−/A−, T− = B+/A−.

Similarly, by letting A− = 0 describing waves incident from the right only, the corre-

sponding reflection and transmission coefficients are

R+ = B+/A+, T+ = B−/A+.

Using these two sets of coefficients we can easily define the the amplitudes B± of the

outgoing waves relative to the incoming wave amplitudes A± by(
B−

B+

)
= S

(
A−

A+

)
, S =

(
R− T+

T− R+

)
, (2.7)

where S here is the scattering matrix and can provide us with a description of the

scattering process. There exist certain relationships between the scattering coefficents

that were derived by Newman (1965), namely

|R−|2 + |T+T−| = |R+|2 + |T+T−| = 1

arg(T−) = arg(T+) + 2α1π

arg(R+R−) − arg(T+T−) = α2π

 , (2.8)

where α1 is an integer and α2
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to find R±, therefore when performing calculations we only need concentrate on either

the reflection or transmission coefficients.

2.2 Approximations of the Equations

Here the equations (2.1) are simplified by approximating the vertical structure of the

fluid motion so as to remove the z coordinate, called ‘vertically integrated’ models.

Approximations of this type have been derived using a variational principle.

Many variational principles have been given, but the form we shall use here is based

on Porter and Staziker (1995) and also used by Porter and Chamberlain (1997).

2.2.1 Variational Approximation

Let D be a domain in the plane z = 0 with boundary C and define the functional

L(ψ) =
1

2

∫ ∫
D

(
ν(ψ2)z=0 −

∫ 0

−h

(∇ψ)2

)
dxdy.

Let δψ denote an arbitrary variation of ψ, then the corresponding first variation of L is

given by

δL =

∫ ∫
D

{
− (δψ(ψz − νψ))z=0 + (δψ(ψz + ∇hh · ∇hψ))z=−h

+

∫ 0

−h

δψ∇2ψdz

}
dxdy +

∫
C

n ·
∫ 0

−h

δψ∇hψdzdc

where n is the outward normal unit vector on C. From this it follows that L is stationary

for variations δψ which vanish on C× [−h, 0] if and only if ψ = φ, where φ satisfies (2.1)

in D × [−h, 0].

An approximation to find the stationary point of L is done by restricting the choice of

ψ to a particular class of functions. Since we are interested here in ‘vertically integrated’
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δL = 0 with ψ(x, y, z) = ξ(x, y) it follows that we have

∇h · h∇hξ + νξ = 0, (2.11)

which is the two-dimensional shallow water equation. We shall be using the one-

dimensional version of this equation later where instead we have ξ = ξ(x) and h = h(x).

An alternative approximation can be found by instead choosing

ω
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since we are only investigating a plane wave parallel to the x-axis, we shall be using the

one-dimension version of (2.12) where h = h(x) and φ0 = φ0(x).



Chapter 3

Forward Wave Scattering

In this chapter we are concerned with finding the reflection coefficient, R, as defined in

section 2.1.1. We will assume that we know the amplitude of the incident wave and also

that we know the bed topography h = h(x) for x ∈ [0, l], and that

h(x) =

{
ha x < 0,

hb x > l,
(3.1)

where ha and hb are known constants, i.e. the depth at x = 0, x = l can be measured.

We also need to choose ν = ω2
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The particular problem that we shall be looking at is the case when we have a plane

wave incident from the left, which is affected by the bed topography and causes both

reflection and transmission waves as shown in Figure
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3.1.1 Formulating the Problem

Using (3.2) and (3.3) we can formulate the boundary value problem

η′′ + k2η = 0 (0 < x < l)

η′(0) + ikaη(0) = 2ika

η′(l) − ikaη(l) = 0

 , (3.4)

where we define η = hφ′. As shown by Chamberlain (1993), (3.4) can be formulated as

the integral equation

η(x) = eikax − i

2ka

∫ l

0

eika|x−t|(k2
a − k2(t))η(t)dt,

= eikax − iν

2ka

∫ l

0

eika|x−t|ρ(t)η(t)dt, ρ(t) =
1

ha

− 1

h(t)
. (3.5)

We note here that the lower and upper integration limits of (3.5) can be changed to −∞
and ∞, since ρ(t) = 0 for t < 0, t > l.

Finally we need to rearrange the equations we have so that we can find R. To do

this we consider

η(0) = h(0)φ′(0) = ikahaI(1 −R),

then, without loss of generality, we choose I = 1/ikaha giving η(0) = 1 −R. Using this

fact and (3.5) implies that

R =
iν

2ka

∫ l

0

eikatρ(t)η(t)dt =
iν

2ka

∫ ∞

0

eikatρ(t)η(t)dt. (3.6)

We now have all that we need to solve the forward wave scattering process for shallow

water. The procedure that we will follow is;

• Suppose the geometry of the problem is fixed, i.e. l and h(t),

• Allow ν to vary in the chosen interval (ν1, ν2),

• For each ν, find η by solving either (3.4) or (3.5),
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• Using η we can find R = R(ν) from (3.6).

It is important to note at this point that (3.5) and (3.6) can be conveniently written

as

η(x) = eikax + (M(ρ)η)(x), R(ν) = (N(η)ρ)(ν),

where we define the operators M = M(ρ) : L2(0,∞) → L2(0,∞) and N = N(η) :

L2(0,∞) → L2(0,∞).

3.1.2 Difficulties For Large ν

Here we are concerned with knowing how R changes with ν, where we would expect that

|R| < 1 and also that |R| → 0 as ν → ∞ which can be seen in Figure 3.2. We expect

|R| < 1 because this amplitude is relative to the incident wave, and the amplitude of

the reflected wave should not be greater than that of the incident.

Figure 3.2: Plot of |R(ν)| using the shallow water approximation, where l = 5 and h(x) = 0.2 −
0.05 × sin(2πx/5)

We also expect |R| to be small for large ν = ω2/g (where ω is wave frequency)

because waves with large frequencies have small wavelengths, and hence would not be
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affected by the bed topography meaning there would be little to no reflection. However

in this case, shallow water, it is not applicable to be talking about large ν since in the

dispersion relation (2.4) we have assumed that kh � 1 implying that tanhkh ≈ kh. By

taking ν to be large implies that k is large and hence this assumption is no longer valid.

Because it is not very accurate to use the shallow water approximation for large ν,

we need to use a more accurate approximation so that talking about the behaviour of

|R| as ν → ∞ makes sense.

3.2 Mild-Slope Approximation

We now attempt to achieve greater accuracy by removing the restriction to shallow wa-

ter. For this we look at the modified mild slope equation (2.12) for the one-dimensional

case φ0 = φ0(x) and h = h(x), giving

(u0φ
′
0)′ + (k2u0 + h′′u1 + (h′)2u2)φ0 = 0,

where u0,0,
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3.2.1 Formulating the Problem

In a similar way as for the shallow water case, using (3.7) with (3.8) we can create the

boundary problem

η′′ + k2η = 0 (0 < x < l)
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For convenience later, we can write (3.10) and (3.11) as

η(x) = eikax + (P (ρ)η)(x), R(ν) = (Q(η)ρ)(ν)

respectively, where we define the integral operators P = P (ρ) : L2(0,∞) → L2(0,∞)

and Q = Q(η) : L2(0,∞) → L2(0,∞).

3.2.2 The Behaviour of R

The forward scattering problem is concerned with the behaviour of R for ν ∈ (ν1, ν2).

What we would again expect is that |R| < 1 for all ν ∈ (0,∞), since a reflected wave

should not have a greater amplitude than the incident wave. We would also expect that

|R| → 0 as ν → ∞, since waves of this type would be too small to be affected by the

bed topography, and hence not reflect.

Figure 3.3: Plot of |R(ν)| using the mild-slope approximation, where l = 5 and h(x) = 0.2 − 0.05 ×
sin(2πx/5)

This expected behavior can be seen in Figure 3.3, but we notice that ν does not

have to be that large for |R| to be approximately equal to zero. This in fact appears to

happen for ν ≥ 11 in this particular example.





CHAPTER 3. FORWARD WAVE SCATTERING 19

1/sinh2kθhθ as ν → ∞. Therefore we see that, for large ν

|R| ≈ e−
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MATLAB which gives a numerical solution using Runge Kutta 4 and 5 schemes.

Figure 3.4: Plots of |R(ν)|, where l = 5 and h(x) = 0.2 − 0.05 × sin(2πx/5) with M = 100 and
M = 1000 respectively

The domain x ∈ [0, l], is divided into N equal sections using (N + 1) nodes and the

range of ν ∈ (ν1, ν2) is divided into M equal sections using (M + 1) nodes. In this case

we have set N = 100 and looked at the results of |R| with different values of M .

In Figure 3.4 we can see that with M = 100, some of the information about R has





Chapter 4

Inverse Wave Scattering

In this chapter we are concerned with using given information about the reflection

coefficient to approximate the bed topography, h(x) for x ∈ (0, l).

We shall assume that the reflection coefficient R = R(ν) for ν ∈ (ν1, ν2) and l are

known, and that ha, hb can be measured and so also known, as shown in Figure 4.1.

Figure 4.1: Graphical representation of the inverse scattering problem, where R and T are the
reflection and transmission amplitudes respectively and h(x), the quiescent depth, is to be found.

The procedure that we shall use to approximate h(t) in this section is an iterative

one, whereby if we have an approximation hn(t) to h(t), we seek to improve this to

hn+1(t
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where the inner iterations are used to converge each hn(t), and the outer iterations are

used to get a first approximation to hn+1(t) from the converged value for hn(t).

4.1 Shallow Water Approximation

We will assume we have the simple case of ha = hb, and begin by looking at the shallow

water case and suppose that we have an approximation hn(t) to h(t). Then using the

integral equation (3.5), given by η(x) = eikax + (M(ρ)η)(x), we can define the nth

approximation to (3.5) by

ηn(x) = eikax − iν

2ka

∫ l

0

eika|x−t|ρn(t)ηn(t)dt, ρn(t) =
1

ha

− 1

hn(t)
. (4.1)

Then once we have solved this approximation for ηn we seek to solve

R(ν) =
iν

2ka

∫ l

0

eikatρn+1(t)ηn(t)dt, (4.2)

for ρn+1(t), where R(ν) is known. Then it is a simple case of finding hn+1(t) given by

hn+1
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η0(x) = eikax. Therefore, using (4.2) gives

R(ν) =
iν

2ka

∫ ∞

0

e2ikatρ1(t)dt, (4.3)

which we wish to solve for ρ1(t). There are two ways that we can do this, either by

inverting a sine, or cosine Fourier transform. If we take the real part of (4.3), we get

−Re50
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sine transform (4.5) because it has the property that ρ1(0) = 0, forcing us to have

h1(0) = ha. We do not have this property with the Fourier cosine transform and so we

may not necessarily match the first point h1(0) as accurately as possible.

Figure 4.2: h1(t) (green) as found by (4.5) and (4.6) respectively to approximate bed topography
(brown).

Expressions (4.5) and (4.6) are only practical if the integral on the right hand side

can be reasonably approximated for R(ν) where ν ∈ (ν1, ν2). This is related to the

problem as noted earlier that the shallow water equations no longer make sense when

we begin to talk about ν → ∞. The effect of this shall be investigated later.

Now that we have a first iterate h1(t), we can fully define the method for subsequent

iterations.

4.1.2 Further Approximations - hn+1(t)

Finding further approximations ,hn+1(t), to h(t) requires a little more work than for

the first approximation, h1(t), because the integral equation (4.2) is harder to deal with

since we may not have that ρn = 0. The method that we shall use is to approximate

each outer iterate, ρn+1, by an inner iteration.

We begin by noting that (4.1) can be written in the operator form ηn(x) = eikax +

(M(ρn)ηn)(x), as desribed in 3.1.1. Then using hn(t), we solve (4.1) for ηn and place



CHAPTER 4. INVERSE WAVE SCATTERING 26

this into (4.2) giving

R(ν) =
iν

2ka

∫ l

0

eikatρn+1(t)(eikat + (M(ρn)ηn)(t))dt

=
iν

2ka

∫ l

0

e2ikatρn+1(t)dt+
iν

2ka

∫ l

0

eikatρn+1(t)(M(ρn)ηn)(t)dt,

which we use to motivate the ‘inner iteration’

iν

2ka

∫ l

0

e2ikatρ
(m+1)
n+1 (t)dt = R(ν) − iν

2ka

∫ l

0

eikatρ
(m)
n+1(t)(M(ρn)ηn)(t)dt (4.7)

where we choose ρ
(0)
n+1 = ρn. To recover ρ

(m+1)
n+1 from (4.7), as for the first approximation

case, we can either invert a Fourier sine or cosine transform. For ease let us define

F (m)(ν) = R(ν) − iν

2ka

∫ l

0

eikatρ
(m)
n+1(t)(M(ρn)ηn)(t)dt

so that using a Fourier sine transform gives

ρ
(m+1)
n+1 (t) = − 4

haπ

∫ ∞

0

Re(F (m)(ν))

ν
sin(2

√
ν/hat)dν. (4.8)

This is more desirable than using a Fourier cosine transform because we can see from

(4.8) that we will always have ρn+1(0) = 0, and so for each approximation n we will have

hn(0) = ha. If we suppose that some stopping criterion is met for the inner iteration

when m = M say, for some M ≥ 1, then we have ρn+1 = ρ
(M)
n+1 and hence can find

hn+1 = (h−1
a − ρn+1)−1.

The procedure that we then use, for the inverse wave s0   0.00   0.00 RG
1 0 0 1 -351.751 -474

when)d
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∗ Find ρ
(m+1)
n+1 from (4.8).

– Set ρn+1 = ρ
(M)
n+1,

– Set hn+1 = (h−
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Solving this equation is more complicated than for the shallow water case because ρ1(t)

depends on ν, and hence we cannot use an inverse Fourier transform directly. Instead

we can approximate any ρn(t) by

ρn(t) = k2
a − k2

n(t) ≈ (ha − hn(t))

[
2k
∂k

∂h

]
h=ha

=
−4k3

a(ha − hn(t))

2kaha + sinh(2kaha)
, (4.12)

which we can place into (4.11). Then taking the real part gives

Re(R(ν)) =
2k2

a

2kaha + sinh(2kaha)

∫ l

0

sin(2kat)(ha − h1(t))dt,

which we can invert using an inverse Fourier sine transform leading to

h
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say, for some M ≥ 1, then we have hn+1 = h
(M) +1

(M
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where

g(xj) = eikaxj K(xj, xi) = − i

2ka

eika|xj−xi|ρn(xi)

and σi are constants such that σ0 = σN = ∆x/2, and σi = ∆x for i = 1, · · · , N − 1.

It is clear that (4.18) represents a system an (N + 1) equations for the unknowns

ηn(xj), j = 0, · · · , N .

We introduce the vectors

η
n

=


ηn(x0)

...

ηn(xN)

 , g =


g(x0)

...

g(xN)

 ,

and the matrix

K =


K00 K01 · · · K0N

...
...

...

KN0 KN1 · · · KNN

 ,

where Kji = σiK(xj, xi). Using these we can rewrite (4.18) and rearrange to find the

solution vector, given as

η
n

= (I −K)−1g.

Once ηn(x) has been approximated, we use a simple trapezium numerical method to

estimate (4.17) in order to find h
(m+1)
n+1 . The stopping criterion that we use is to look at

the maximum difference between the (m)th and (m− 1)th iteration given by

‖h(m)
n+1 − h

(m−1)
n+1 ‖∞ =  0 0 491 0 Td[())]TJ/F40 7.97 Tf 39051m+1)

n+1 xj),�K(m� 1)
n+1
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will be investigated in Chapter 5.

4.4 A Possible Extension

What we have dealt with so far is the simple case where ha = hb. How can we change

the inverse iteration process used for the simple case to solve the far more likely (and

complicated) problem when ha 6= hb? We shall use the mild-slope approximation and

suppose that we know R = R(ν) for ν ∈ (0,∞). We will again be using an iterative

process so we shall also suppose that we already have an approximation, hn(t), and are

seeking an improvement, hn+1(t), to h(t).

To begin, we let kn = k(hn) be the solution to the dispersion relation (2.4) and then,

based on (3.18), we solve the forward problem

ηn(x) = γneikbx − i

2kb

∫ l

0

eikb|x−t|(k2
b − k2

n(t))ηn(t)dt, (4.19)

for ηn, where

γn =
ka

kb

+
1

2

(
1 − ka

kb

)
ηn(0).

Combining (4.19) with (3.20), we aim to update our approximation to h(t) by using

R(ν) =
kb − ka

kb + ka

+
i

kb + ka

∫ ∞

0

eikbt(k2
b − k2

n+1(t))ηn(t)dt, (4.20)

so that we can extract kn+1(t). Using this we can obtain hn+1 = k−1
n+1tanh−1(νk−1

n+1),

and this will be referred to as the outer iteration. The inner iteration is concerned with

extracting kn+1 from (4.20).

Using (4.19) we can write ηn(t) = γneikbt + (ηn(t) − γneikbt), then placing this into
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h0(x) = hb so that (4.19) simplifies to give η0(x) = γneikbx. Using this ie83bx



Chapter 5

Results

In this section we are going to test certain aspects of the inverse scattering iteration

process as described in Chapter 4. We shall look at how accurate the shallow water

and mild-slope approaches are with respect to estimating each approximation to h(x),

hn(x), and we shall also test the convergence of the inner and outer iterations.

The depth profiles that we shall be using are;

• hA(x) = ha − ε sin(2πx
l

), where we shall choose ha = 0.2, ε = 0.02 and l = 5.

Figure 5.1: Depth profile hA(x).

35
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• hB(x) = ha

(
1 + 2ε

(
1 −

(
((x/l) − α) · (x/l)−1+α

α(1−α)

)2
))

, where we shall choose ha =

0.2, ε = 0.05, α = 0.15 and l = 5.

Figure 5.2: Depth profile hB(x).

• hC(x) = ha (1 + ε sin(2π(x/l)4) − 0.5ε sin(2π((l − x)/l)4)), where we shall choose

ha = 0.2, ε = 0.08 and l = 5.

Figure 5.3: Depth profile hC(x).

To be able to test the procedure we have formulated to solve the inverse problem we

first need to find R(ν) for ν ∈ (ν1, ν2). We do this by setting the depth profile, h(x) for
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error between h(x) and h1(x) varies with the range of ν, and for each bed topography

hA, hB, hC . We can see that these errors are not large, but there is still much room for

improvement.

hA hB hC

ν2
‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

0.1 0.0786 0.0472 0.0677 0.0849 0.0812 0.0762
0.2 0.0386 0.0125 0.0536 0.0368 0.0635 0.0645
0.4 0.0282 0.0114 0.0395 0.0233 0.0404 0.0385
0.6 0.0195 0.0115 0.0377 0.0164 0.0353 0.0371
0.8 0.0191 0.0113 0.0359 0.0162 0.0329 0.0196
1 0.0159 0.0113 0.0364 0.0159 0.0292 0.0204
2 0.0123 0.0108 0.0323 0.016 0.0204 0.0121
4 0.0127 0.0108 0.0295 0.0168 0.0125 0.0076
6 0.0145 0.0112 0.0268 0.018 0.0093 0.0067
8 0.0159 0.0119 0.0241 0.0198 0.0093 0.0065
10 0.0186 0.013 0.0214 0.0225 0.0093 0.0064
12 0.0205 0.0143 0.0209 0.0258 0.0093 0.0064
14 0.0223 0.0156 0.0236 0.0295 0.0093 0.0065
16 0.0245 0.017 0.0259 0.0335 0.0093 0.0067
18 0.0268 0.0184 0.0286 0.0376 0.0097 0.007
20 0.0291 0.0195 0.0309 0.0416 0.0107 0.0073

Table 5.1: Error analysis of h1(x) as an approximation to h(x) using the shallow water approximation.

We notice that from these results that the smallest values, ν2 = 0.1, ν2 = 0.2 give

much larger errors, which may be because we have not included enough information

from R(ν)
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5.1.2 Mild-Slope Approximation

As for the shallow water approximation, we are fixing ν1 = 0.0001 and allowing ν2 ∈
[0.1, 20], then approximating (4.13) between these limits (ν1, ν2)2. Also, as before, we

have set N = 100 and M = 1000. Therefore we are setting ∆x = l/100 and giving a

variable ∆ν.

The results from finding the error between the first approximation, h1(x) found using

(4.13), and the actual bed topography, h(x), for different ranges of ν are shown in Table

5.2 .

hA hB hC

ν2
‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

0.1 0.0464 0.0449 0.0695 0.0881 0.0812 0.0762
0.2 0.0232 0.0187 0.0386 0.0397 0.0631 0.0648
0.4 0.0136 0.0143 0.0286 0.0276 0.0390 0.0379
0.6 0.0109 0.0138 0.0236 0.0187 0.0348 0.0349
0.8 0.0100 0.0137 0.0264 0.0198 0.0315 0.0191
1 0.0095 0.0137 0.0255 0.0186 0.0292 0.0190
2 0.0105 0.0142 0.0282 0.0189 0.0181 0.0098
4 0.0114 0.0159 0.0323 0.0220 0.0102 0.0077
6 0.0123 0.0181 0.0359 0.0262 0.0088 0.0075
8 0.0136 0.0206 0.0395 0.0311 0.0093 0.0078
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what we would expect as a result of the mild-slope approximation, and so a possible

reason for this problem may be that in our numerical evaluation of (4.13) we are using a

variable ∆ν. If instead we used a fixed ∆ν and a variable M we may get better accuracy,

which we shall test later.

5.2 Convergence of Iterations

Once a first approximation has been calculated, the inverse scattering process is an

iterative one but it is not yet known whether these iterations will converge to the solution

h(x). Therefore in this section we are testing the convergence of this iterative process

using (4.8) and (4.17), for shallow water and mild slope approximations respectively.

To test for inner iteration convergence we are looking at the maximum error between

the (m)th and (m− 1)th iterates given by

‖h(m)
n − h(m−1)

n ‖∞ = max
j=0,··· ,N

|h(m)
n (xj) − h(m−1)

n (xj)|,

and similarly for outer iteration convergence we are looking at the maximum error

between the (n)th and (n− 1)th iterates given by

‖hn − hn−1‖∞ = max
j=0,··· ,N

|hn(xj) − hn−1(xj)|,

where we have discretised hn(t) using (N + 1) nodes, and xj = j∆x where ∆x = l/N .

For convergence we expect this value to be very small, and decrease to zero as m and n

are increased.

We shall also be testing to see if this new approximation, hn(x), has actually con-

verged to the solution, h(x), that we are looking for, since it may converge to an entirely

wrong approximation. To test for this we shall be using the same error norms as used

to test the accuracy of the first approximation, h1(x), and we shall be comparing these

to the first approximation in order to ascertain whether this new approximation is more

accurate.
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5.2.1 Shallow Water Approximation

As for the first approximation, we have found R(ν) for ν ∈ (ν1, ν2) where we have set
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hA hB hC

ν2
‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

0.5 0.0232 0.0295 0.0423 0.0605 0.0366 0.0533
1 0.0159 0.0550 0.0364 0.1114 0.0292 0.1257
5 0.0132 1 0.0282 1 0.0102 1.0264

Table 5.5: Comparing the relative error of h1(x) with h2(x).

hA hB hC

ν2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2

0.5 0.0124 0.0327 0.0199 0.044 0.0371 0.0535
1 0.0113 0.048 0.0159 0.0908 0.0204 0.1186
5 0.011 2.005 0.0173 2.1137 0.007 0.4691

Table 5.6: Comparing the total error of h1(x) with h2(x).

the correct solution we would expect this new approximation to be more accurate than

the previous.

In Tables 5.5 and 5.6 we have compared the accuracy of h2(x) with h1(x) in ap-

proximating h(x). We can see from the results shown that the new approximation is

less accurate than the first approximation, in fact we can see that as ν2 is increased the

errors have become very large. From this we can infer that the iteration process fails

Figure 5.4: Comparis4 Td[0r5 0 Td[o6 1 5063 Tf 128.242 0 Td[(h)]TJ/F7 6.974 Tf 5.74 -1.494 Td[(1)]T 5.768.75 0 0 351.75 0 0 cm
/Im12 Do
Q
 Q
1 0 0 1 39.425 -24.409 cm
0 g 0 G
1 0 0 42 cm
q
[]0 d
0 J
0.sss fails
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Even though the iterations appear to be convergent, we cannot guarantee that what

they are converging to is the required solution. To test this we have performed similar

error analysis as with the first approximation, the results of which can be seen in Table

5.8. The results show that the approximations, hn(x), are more accurate for smaller

values of ν2 and that the errors become much larger as ν2 is increased, which is most
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even though ν2 gives the smallest errors, the converged solution is a poor approximation

to h(x). This is possibly most clear for the case when h = hC .

Figure 5.5: Converged depth profiles for hA, hB and hC respectively with ν2 = 0.3, using the shallow
water approximation.

5.2.2 Mild-Slope Approximation

As for the shallow water approximation, we have found R(ν) for ν ∈ (ν1, ν2) where we

have set ν1 = 0.0001 and allowed ν2 to vary. In each case, for numerical computation,

we have uniformly discretised ν using (M + 1) nodes meaning that ∆ν = (ν2 − ν1)/M

is variable, as earlier.

Inner Iterations

From Tables 5.9 and 5.10 we can see that the inner iterations appear to be converging

as the number of iterations, m, is increased. Also by comparing Tables 5.9 and 5.10

with 5.3 and
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‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 1.68 × 10−4 1.30 × 10−4 2.93 × 10−6

3 1.40 × 10−5 8.38 × 10−6 2.47 × 10−8

4 8.04 × 10−7 5.59 × 10−7 2.73 × 10−10

5 6.79 × 10−8 3.96 × 10−8 2.55 × 10−12

10 7.82 × 10−14 5.07 × 10−14 0
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hA hB hC

ν2
‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

0.5 0.0127 0.0118 0.0259 0.0241 0.0343 0.0348
1 0.0095 0.0114 0.0255 0.0150 0.0292 0.0311
5 0.0118 0.0127 0.0345 0.0209 0.0083 0.0097
10 0.0150 0.0150 0.0432 0.0373 0.0088 0.0083
15 0.0186 0.0191 0.0532 0.0523 0.0102 0.0102

Table 5.12: Comparing the relative error of h1(x) with h2(x).

hA hB hC

ν2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2

0.5 0.0142 0.014 0.0243 0.021 0.0363 0.0362
1 0.0137 0.0136 0.0186 0.0134 0.019 0.0182
5 0.0169 0.0168 0.024 0.019 0.0076 0.0069
10 0.0233 0.0232 0.0366 0.0333 0.0081 0.0075
15 0.0301 0.0301 0.0513 0.0491 0.0094 0.0089

Table 5.13: Comparing the total error of h1(x) with h2(x).

Tables 5.12 and 5.13 show the errors between the newly converged h2(x) and h(x),

compared with the error that arose using the first approximation. These results hint

at the idea that the new approximation is more accurate than the first, and so the

converged limit is in fact tending to the solution h(x).

Figure 5.6: Comparison of h1 with h2 using h = hB and ν2 = 1.
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This certainly appears to be the case when using h = hB since both the relative and

total errors have decreased, and comparing Figure 5.6 with Figure 5.4 it is clear to see

that the mild-slope approximation is working much accurately than the shallow water

approximation. However, it is less clear that the inner iterations are converging to h(x)

for h = hA and h = hC , since although some of the total errors may have decreased

there are some instances where the the maximum error has increased. This is not the

desired result, as we would hope to see the maximum error between hn(x) and h(x) to

tend to zero as n is increased.

Outer Iterations

As we did for the shallow water approximation, we now look at the outer iteration

process for the mild-slope approximation and attempt to find signs that these iterates

are converging and if so, to what solution. From Table
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Tables 5.14 and 5.7 we see that the convergence in the mild-slope approximation case,

in general, is much faster and more convincing than in shallow water case. However, we

still have the same question as to whether these iterations are in fact converging to the

required solution h(x).

In Table 5.15 we can see that the errors between the approximation, hn(x), and

h(x) do not grow or oscillate as in the shallow water approximation case. We also note

that most of these errors are smaller than for the corresponding first approximation as

shown in Table 5.2, and others are not greatly larger. This was not the case for the

shallow water approximation, and so we can see that for the mild-slope approximation

the iteration process appears to improving toward the desired solution.

hA hB hC

ν2 n ‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

1 2 0.0114 0.0136 0.0150 0.0134 0.0311 0.0182
3 0.0114 0.0137 0.0150 0.0137 0.0311 0.0182
4 0.0114 0.0137 0.0155 0.0138 0.0311 0.0182
5 0.0114 0.0137 0.0155 0.0138 0.0311 0.0182

5 2 0.0127 0.0168 0.0209 0.019 0.0097 0.0069
3 0.0132 0.0169 0.0182 0.019 0.0102 0.0068
4 0.0132 0.0169 0.0182 0.019 0.0102 0.0068
5 0.0132 0.0169 0.0182 0.019 0.0102 0.0068

15 2 0.0191 0.0301 0.0523 0.0491 0.0102 0.0089
3 0.0191 0.0302 0.0505 0.049 0.0102 0.0089
4 0.0191 0.0302 0.0500 0.049 0.0102 0.0089
5 0.0191 0.0302 0.0500 0.049 0.0102 0.0089

Table 5.15: Error analysis of hn(x) to h(x) using the mild-slope approximation.

The greater accuracy in the mild-slope approximation over that of the shallow water

approximation can also be seen by comparing Figure 5.7 with Figure 5.5 (and also in

further results in Appendix A). Here we see that, particularly for

0.0150 0.0134
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at points where h(x) has a local maximum or minimum. It is also possible that the

amplitudes of these curves play a part in the accuracy of the approximation, since the

turning points in h = hC , that have smaller amplitude, are better approximated than

those in h = hA or h = hB.

Figure 5.7:
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Figure 5.10: Converged depth profiles for h = hB using the mild-slope approximation, where ν2 has
been allowed to vary.

Figure 5.11: Converged depth profiles for h = hC using the mild-slope approximation, where ν2 has
been allowed to vary.

This level of accuracy for small ν is not shared in each case. For example, in Figure

5.10 with h = hB, we can see that for ν ∈ (0.0001, 0.2) the converged solution gives

a very crude idea as to the topography, but not yet as accurate as for h = hA. Also

for more complicated topographies, as in Figure 5.11 with h = hC , we see that a much

larger range for ν is required, since for ν ∈ (0.0001, 0.4) the converged solution is only

just starting to take the shape of the actual solution.
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Figure 5.12: Converged depth profiles for h = hA using the mild-slope approximation, where ν1 has
been allowed to vary.

Figure 5.13: Converged depth profiles for h = hB using the mild-slope approximation, where ν1 has
been allowed to vary.

We are also interested to see how the converged approximation reacts if the smallest

values of ν are no longer included. So far we have set ν1 = 0.0001 and allowed ν2 to
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From Figures 5.12, 5.13 and 5.14 we can see that this does indeed appear to be the

case and furthermore, that for ν ∈ (1, 5) the approximations are particularly poor which

is an indication that much of the necessary information is in the range (0, 1).
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By making the amplitude of these stationary points larger we expect that the errors

will increase, and perhaps that the mild-slope approximation may fail to converge. In

Figure 5.15 we can see that with a greater amplitude (half of the depth), the approxi-

mation is worse. The first approximation appears to be a fair estimate, but as soon as

we begin the iterative process we see that the approximation is wildly inaccurate. Not

only have the errors grown substantially but according to the approximation, the bed

topography protrudes out of the water’s surface.

Figure 5.15: Depth profile h = hA with ε = 0.1

Conversely, by making the amplitude of stationary points smaller we get a much

more accurate approximation. This is what we would expect since the mild-slope ap-

proximation is based on the idea that the gradient is very small and to have a stationary

point of lesser amplitude means that the gradient is also less, and so the approximation

works better.



Chapter 6

Summary, Future Work &

Conclusions

Summary

In some existing literature on linear wave scattering, fundamental ideas of fluid dynamics

were used to formulate a boundary value problem for the velocity potential of the water

in the (x, z) plane. The solution to this could then be approximated, for simplicity,

by using either the shallow water hypothesis that the wavelength is much greater than

the quiescent depth, or by using the mild-slope hypothesis that the gradient of the

underlying bed topography is small. Reflection and transmission coefficients were also

defined for plane waves and had been found to rely on the amplitude of the incident

wave. Also, through the use of an identity it was shown that knowing one of these

coefficients meant the other could be recovered.

Using this theory and each approximation in turn, we were able to formulate a forward

wave scattering problem. We assumed that the bed topography was known along with

the amplitude of the incident wave and we were seeking the reflected amplitude, R(ν)

for all ν ∈ (0,∞), where ν = ω2/g (with ω being the frequency of the incident wave,

and g the acceleration due to gravity). This turned out to be fairly simple and we were

able to find an explicit expression for R(ν). We then looked at the behaviour of R as

ν → ∞ and found that for the shallow water approximation R did not tend to zero

57
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in some way on the norm of the integral operator in (4.9), which in turn is dependent

on h(x).

An evident problem with the inverse method is that without prior knowledge of the un-

derlying topography, we have no way of knowing how accurate any given approximation
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results in Section 5.3.1, since we have also seen that including larger values of ν may

not increase accuracy and so may be neglected. The accuracy of the approximation

however, is also dependent on the amplitude of any stationary points in the bed profile,

h(x). The smaller the amplitude, the greater the accuracy meaning that to know our

results are accurate we must already know that the gradient of the bed profile is very

mild.

Therefore with a small range of reflected data, R(ν), and some prior knowledge

that the bed profile is mild, we can use the iterative inverse method and mild-slope

approximation to find an accurate representation of the underlying topography.



http://www.wikiwaves.org/index.php/Main_Page
http://mathworld.wolfram.com/


Appendix A

More Tables And Figures

A.1 Shallow Water Approximation

Inner Iteration Convergence

Following on from the results for the inner iteration convergence in Section 5.2.1, Tables

A.1, A.2 and A.3 show the error between iterations for a larger range of ν ∈ (ν1, ν2).

These results do not imply convergence to the solution.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 0.0678 1.8175 0.3929
3 0.1135 9.0984 0.3124
4 10.9085 68.3473 0.2286
5 27.8077 68.1714 0.1371
10 0.731 0.0186 0.2667
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‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 6.9635 84.6378 10.7729
3 8.9364 6.7553 10.5104
4 9.1073 0.7272 18.9734
5 1.4282 0.1739 19.2164
10 1.78 × 10−5 9.26 × 10−8 0.8124
15 1.38 × 10−9 6.92 × 10−12 2.70 × 10−4

Table A.2: Maximum error between the (m)th and (m − 1)th iterate with ν2 = 10, using the shallow
water approximation.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 93.2334 13.445 6.4016
3 92.9916 4.1052 22.7819
4 1.1235 1.0531 22.8502
5 0.0614 0.0103 0.6481
10 5.62 × 10−8 7.87 × 10−9 1.46 × 10−4

15 1.66 × 10−14 6.56 × 10−15 9.97 × 10−8

Table A.3: Maximum error between the (m)th and (m − 1)
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and A.2 are the converged limits for h = hA and h = hB
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Once inner iteration convergence was established we moved on to the outer iteration

convergence for the shallow water approximation, and concentrated on small values for

ν2. Following on from the results given in Section 5.2.2, Figures A.3 and A.4 show the

converged approximations to h(x) for other ranges of ν.

Figure A.4: Converged depth profiles for hA, hB and hC respectively with nu2 = 0.7, using the
shallow water approximation.
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A.2 Mild-Slope Approximation

Inner Iteration Convergence

Following on from the results for the inner iteration convergence in Section 5.2.2, Tables

A.4 and A.5 show the error between iterations for different ranges of ν ∈ (ν1, ν2). These

results help to reinforce the implication that inner iterations are converging using the

mild-slope approximation. As was noted in Section 5.2.2 the convergence for the mild-

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 2.43 × 10−4 6.50 × 10−4 1.14 × 10−4

3 2.97 × 10−5 2.00 × 10−4 9.00 × 10−6

4 5.39 × 10−6 4.41 × 10−5 7.98 × 10−7

5 8.77 × 10−7 1.31 × 10−5 6.69 × 10−8

10 8.81 × 10−10 1.86 × 10−8 2.91 × 10−13

15 1.93 × 10−12 3.24 × 10−11 2.78 × 10−17

Table A.4: Maximum error between the (m)th and (m−1)th iterate with ν2 = 5, using the mild-slope
approximation.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 2.68 × 10−4 7.39 × 10−4 1.13 × 10−4

3 3.34 × 10−5 1.39 × 10−4 7.79 × 10−6

4 6.21 × 10−6 4.01 × 10−5 7.95 × 10−7

5 1.12 × 10−6 5.07 × 10−6 6.53 × 10−8

10 1.19 × 10−9 1.05 × 10−8 6.00 × 10−13

15 4.26 × 10−12 1.16 × 10−11 2.78 × 10−17

Table A.5: Maximum error between the (m)th and (m−1)th iterate with ν2 = 15, using the mild-slope
approximation.

slope approximation appears to faster than for the shallow water approximation. This

is quite evident by comparing Tables A.4 and A.5 with Tables A.1, A.2 and A.3 as the

errors for the mild-slope approximation are smaller and decrease faster as m is increased.

It is also evident, by simply comparing Figures A.5 and A.6 with Figures A.1 and A.2,

that the mild-slope approximation produces far more accurate second iterates, h2(x),
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than the shallow water approximation.

Figure A.5: Comparison of h1 with h2 using h =
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Figure A.7: Converged depth profiles for hA, hB and hC respectively with ν2
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