
A Moving Mesh Finite Element Method for High

Order Non-Linear Diffusion Problems

Bonhi Bhattacharya

August 21, 2006

Abstract

In this dissertation a moving mesh method, based on a conservation of massract

Contents

1 Introduction 1

2 Non-Linear Diffusion 4

2.1 The Porous Medium Equation 5

2.2 The Fourth Order Thin Film Equation 6

2.3 Sixth Order Non-Linear Diffusion 7

3 Moving Mesh Methods 9

3.1 Velocity Based Methods . 10

4 A Moving Mesh Method 13

4.1 A Conservation Principle . 13

6.1 Fourth Order Results . 34

6.2 Sixth Order Results . 34

7 Behaviour of the Moving Boundary 36

7.1 Fourth Order Case . 37

7.2 Sixth Order Case . 38

8 Numerical Results for the Moving Boundary 40

8.1 The Fourth Order Case . 41

8.1.1 Instant Advance . 41

8.1.2 Instant Retreat . 43

8.1.3 Waiting Time Behaviour 45

8.2 The Sixth Order Case . 45

9 Conclusions and Further Work 54

9.1 Summary . 54

9.2 Remarks and Further Work 55

9.2.1 Scale Invariance . 55

9.2.2 Timestepping . 56

9.2.3 Errors . 56

9.2.4 Initial Grid Distribution 57

9.2.5 Extension to Further Applications 57

iv

Chapter 1

Introduction

Adaptive mesh techniques play an important role in improving existing finite

element methods for the numerical solution of partial differential equations,

by concentrating mesh points in areas of interest. Such areas exist when

large variations occur in the solution, which include moving boundaries,

shocks and blow up.

Introduction

Introduction

the possible behaviours that can arise as the boundary moves. We also dis-

cuss conjectures and results in the existing literature about the parameters

for which these behaviours occur. We then go on in Chapter Eight to pro-

vide numerical results of the investigation of the moving front and compare

these in the fourth order case to the results obtained by asymptotic anal-

yses. For the sixth order case we investigate whether our results support

existing conjectures. Further since analytic error analysis is not possible

for moving mesh methods, we investigte whether the results obtained on a

moving mesh match results obtained using a fixed mesh method for which

error analysis exists. Finally in Chapter Nine, we present our conclusions,

and discuss limitations of the model and possible improvements, as areas of

possible further work.

3

Chapter 2

Non-Linear Diffusion

In this chapter we present some applications of nonlinear diffusion. It is

hoped that this chapter will illustrate the need for efficient numerical solu-

tions of the nonlinear diffusion equations, by providing examples of the wide

Non-Linear Diffusion

material through which the diffusion is occurring.

2.1 The Porous Medium Equation

The Porous Medium equation, which is characterised by p = u in (2.0.1),

Non-Linear Diffusion

stand pathological conditions related to these materials, one example being

tumour growth.

In the first stage of tumour development, tumours are ordinarily avascu-

Non-Linear Diffusion

When n = 1, the equation models flow in a Hele-Shaw cell. In a Hele-

Non-Linear Diffusion

Another possible application has been postulated in modelling approaches

to the wrinkling process when a compressively strained elastic film is bonded

to a viscous layer [19]. A specific example is the wrinkles formed upon an-

nealing of a compressively strained silicon germanium alloy film bonded to

a silicon substrate covered with a glass layer. This wrinkling has also been

seen in thin metal films on polymers and may have uses in optical devices

such as diffraction gratings.

8

Chapter 3

Moving Mesh Methods

In this chapter, we look at moving mesh methods in the context of solving

time-dependent partial differential equations, examples of which were given

in Chapter Two. These equations have solutions with features which evolve

over time, and an adaptive numerical method is needed if these features are

to be resolved accurately.

Moving mesh methods require the generation of a mapping from a reg-

ular domain in the computational space, Ωc, to an irregular domain in the

physical space, Ω. The physical domain can be covered with a computational

mesh by connecting points in the physical space to corresponding discrete

points in the computational space. Let x denote the physical co-ordinate

in the domain Ω, and ξ, the computational co-ordinate in the domain Ωc .

Then this mapping can be defined as a one-to-one transformation described

by

x = x(ξ, t) (3.0.1)

which maps points in the computational space at time t, onto the physical

space.

Many approaches have been developed for generating moving adaptive

meshes, and most can be classified as either location based or velocity based

methods. Location based methods are so called because they seek to directly

9

Moving Mesh Methods

control the location of the mesh points, an example being the variational

method, which determines the mapping from the computational to the phys-

ical domain by minimizing a variational form, or functional [14].

3.1 Velocity Based Methods

Velocity based methods are considered in greater detail, as the moving mesh

method used in this dissertation is an example of this group. Velocity based

methods compute a mesh velocity, v = xt, using a Lagrangian like formu-

lation. The mesh point location can be found from this velocity using time

integration.

We can consider a classical Lagrangian method, as in fluid dynamics,

where the Lagrangian co-ordinates form a co-ordinate system which follows

fluid particles. Then if u(x, t) represents the velocity of the fluid, ξ represents

the reference co-ordinate of a fluid particle, and x(ξ, t), the position of the

particle at time t. The particle then evolves with

∂x

∂t
= u

We can then consider a velocity based method in two stages. First a

mapping from the computational to the physical domain is generated. Once

a suitable mapping has been determined, a motion is induced on the mesh

by considering the rate of change in time of this mapping, which generates

the moving mesh equations. These equations give each computational node

an associated velocity, which can then be used to advance the mesh forward

in time.

One of the most commonly used approaches to generate an irregular

mapping is the equidistribution principle introduced by De Boor, [11]. Here,

mesh points are chosen so that some measure is equally distributed over each

computational cell of the mesh. This measure is user defined, known as the

10

Moving Mesh Methods

monitorfunction, and is a positive function of the solution u and/or its

derivatives.

In terms of the mapping outlined in equation (3.0.1), the equidistribution

principle can be written as∫ x(ξi+1)

x(ξi)
Mdx =

1
N

∫ 1

0
Mdx (3.1.1)

for M , some monitor function, with the form

M = M(x, u, ux, uxx . . .) (3.1.2)

Possibe monitor functions include M = 1, which produces a uniform grid,

and the popular arc-length monitor, where

M =

[
1 +

(
du

dx

)2
]1/2

(3.1.3)

Other choices exist for the monitor function, which are not discussed here,

but their aim is to create a grid with low resolutions where there is low ac-

tivity in the solution, and increased resolution where there is greater change

in the solution. Many moving mesh methods have been derived using a

monitor function to control mesh movement and other methods have also

been developed which are related in some way to these methods, see for

example [14], [15], [20].

Recently, there has been much work centered on the use of moving mesh

methods applied to PDEs which possess scale invariant behaviour and self-

similar solutions [13]. Here it is proposed that the monitor function used

should, in some manner, also be scale invariant when applied to PDEs which

are scale invariant. In [5], Baines, Hubbard and Jimack, used the mass

monitor function M = u, when constructing a moving mesh method to solve

the nonlinear diffusion equations, the motivation being that these equations

are mass conserving.

11

Moving Mesh Methods

In the next chapter, a moving mesh finite element algorithm, as used in

[5] is derived for the adaptive solution of nonlinear diffusion equations with

moving boundaries in one dimension.

12

Chapter 4

A Moving Mesh Method

d

dt

∫ xN (t)

x0(t)
u(t) =

∫ xN (t)

x0(t)

∂u

∂t
dx+

d

dt
xN (t)

d

A Moving Mesh Method

Using Leibnitz’ rule in (4.3), gives∫ xi(t)

xi−1(t)

∂u

∂t
dx+

d

dt
xi(t)

d

dxi(t)

∫ xi(t)

xi−1(t)
u(t)dx

+
d

dt
xi−1(t)

d

dxi−1(t)

∫ xi(t)

xi−1(t)
udx = 0

Substitution from (4.1.1) leads to

[
un
∂2m+1u

∂x2m+1
+ ẋu

]xi(t)

x0(t)

= 0 (4.1.7)

Further, since u = 0 at x = x0(t),

un
∂2m+1u

∂x2m+1
+ ẋu = 0 (4.1.8)

at x = xi(t) ∀i. Hence

ẋ = −un−1∂
2m+1u

∂x2m+1
(4.1.9)

except when u = 0. By continuity, (4.1.9) also holds as u → 0.

This gives the velocity of a general mesh point, from which the new position

of the point can be calculated by time integration. The new solution u may

A Moving Mesh Method

∫ xi+1(t)

xi−1(t)
u
∂φi
∂x

ẋdx = −
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂2m+1u

∂x2m+1
dx

= −
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂q

∂x
dx (4.2.5)

for all interior nodes, where, for example, in the sixth order case, 2m+1 = 5

q = −∂2p

∂2x
and p = −∂2u

∂2x
(4.2.6)

For any u, p is obtained from the weak form of the equation

p = −∂2u

∂2x
(4.2.7)

∫ xi+1

xi−1

φipdx = −
∫ xi−1

xi+1
φi
∂2u

∂x2

=
[

−φi
∂u

∂x

]xi+1

xi−1

+
∫ xi−1

xi+1

∂φi
∂x

∂u

∂x
dx (4.2.8)

and using the boundary condition that φ = 0 at xi+, xi− 1,

∫ xi−1

xi+1

∂φi
∂x

∂u

∂x
dx =

∫ xi+1

xi−1

φipdx (4.2.9)

Now the finite element approximations are expanded in terms of the

basis functions φi to give

u =
N∑
j=1

ujφj , p =
N∑
j=1

pjφj , q =
N∑
j=1

qjφj (4.2.10)

These forms are substituted in to (4.2.6). Then

Ku = Mp (4.2.11)

17

A Moving Mesh Method

where both K, is the standard stiffness matrix with entries of the form

Kij =
∫ xi+1(t)

xi−1(t)

∂φi
∂x

∂φj
∂x

dx (4.2.12)

and M is the standard mass matrix with entries of the form

Mij =
∫ xi+1(t)

xi−1(t)
φi(x)φj(x)dx (4.2.13)

Both matrices are tridiagonal, and the system is solved using a direct

tridiagonal solver. In a similar fashion, q can be obtained from p by solving

the mass matrix system

Kp = Mq (4.2.14)

Once q has been obtained, it is used in equation (4.2.5)

∫ xi+1(t)

xi−1(t)
u
∂φi
∂x

ẋdx = −
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂q

∂x
dx (4.2.15)

The matrix form of this equation is difficult to solve in practice because the

resulting system creates a non symmetric matrix. It is therefore convenient

to introduce a velocity potential ψ, such that

ẋ =
dψ

dx
(4.2.16)

where ψ is piecewise linear, and the expanded finite element approximation

of ψ is given by

ψ =
N∑
j=1

ψjφj (4.2.17)

This results in (4.2.14) becoming the stiffness matrix system

K(u)ẋ = −K(un)q (4.2.18)

where K(u) and K(un) are weighted stiffness matrices. K(u) has entries of

the form

18

A Moving Mesh Method

Kij =
∫ xi+1(t)

xi−1(t)
u
∂φi
∂x

∂φj
∂x

dx (4.2.19)

and K(un) has entries of the form

Kij =
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂φj
∂x

dx (4.2.20)

for interior nodes. The integrals are evaluated within these intervals by

numerical integration using Simpson’s rule. ẋ is then recovered from ψ by

constructing a finite element formulation of equation(4.2.15),

∫ xi+1

xi−1

φiẋdx =
∫ xi+1

xi−1

φi
dψ

dx
dx (4.2.21)

which results in the mass matrix system

Mẋ = Bψ (4.2.22)

where B has entries of the form

Bij =
∫ xi+1(t)

xi−1(t)
φi
∂φj
∂x

dx (4.2.23)

Evaluations of these integrals results in an antisymmetric structure for B as

ilustrated below.

B =



0 − 1
2 0 0 . . .

1
2 0 − 1

2 0 . . .

0 1
2 0 − 1

2

. . .
... 0 1

2 0
. . .

...
...

.


showing how dψ

dx is constructed from ψ

@i

A Moving Mesh Method

Once the new mesh has been obtained, the new solution on this mesh

is found by solving the conservation of mass equation (4.2.1), with the new

positions of the nodes. This solution is equivalent to solving the mass matrix

system

Mu = c (4.2.24)

where c is given by

c =
∫ xi+1(t)

xi−1(t)
φiu0dx (4.2.25)

for initial data u0. The integral is evaluated using a Gaussian Quadrature

rule, and remains constant, so preserving the distributed mass in an interval.

However, overwriting the boundary conditions u = 0 at (x0(t), xN (t))

will result in the loss of mass conservation, since the first and last equations

of (), will in general no longer be satisfied. To overcome this a mass con-

served version of () is used, in which the first equation of () is added to the

second, and the last equation to the last but one, prior to overwriting these

conditions.

4.2.1 Timestepping

The new node positions can be found using any timestepping algorithm.

In practice though, implementation of implicit schemes is a complicated

A Moving Mesh Method

(6.0.3)). This has posed a problem here for the C++ code written, due

to memory restrictions allowing only a certain number of timesteps to be

run; such a small timestep means the behaviour of the solution over longer

time scales cannot be determined. To overcome this problem, a version

of the same method implemented in FORTRAN from the work of Baines,

Hubbard, and Jimack is used to run the method for larger final times.

21

Chapter 5

Self-Similar Solutions

Any numerical method used to solve the nonlinear diffusion problem would

need to have the property that the numerical solution will eventually con-

verge to the true solution. A class of true solutions called similarity solutions

are used here to verify the numerical results obtained. Once the reults have

been evaluated, the method can then be used to investigate initial data for

which no analytic solution is known.

5.1 Scale Invariance

A symmetry of the partial differential equation,

ut = f(x, u, ux, uxx,) (5.1.1)

is defined to be a transformation of (x, u, t) which leaves the underlying

PDE unchanged. This can be considered as a transformation of (x, u, t) to

(x̄, ū, t̄) such that

x̄ = x̄(x, u, t), ū = ū(x, u, t), t̄ = t̄(x, u, t) (5.1.2)

so that the equation satisfied by (x, u, t), is also satisfied by (x̄, ū, t̄). To con-

struct similarity solutions for the PDE, a subclass of symmetries known as

22

Self-Similar Solutions

(2m+ 1)β − nγ = 1 (5.1.9)

giving a class of symmetries

5.2 Self Similar Solutions

The boundary conditions u = 0 at a(t) = b(t) for the general equation induce

conservation of mass(see (4.1.4)), which becomes∫ b(t)

a(t)
udx =

∫ b(t)

a(t)
λγ ūd(λβx̄) = constant in time (5.2.1)

λγ+β

∫ b(t)

a(t)
ūd(x̄) = constant in time (5.2.2)

and scale invariance holds for the nonlinear diffusion equations, provided

γ + β = 0 (5.2.3)

Then it can be seen, by solving the simultaneous equations (5.1.9), and

(5.2.3), that the only self similar solution for the PDE under these condi-

tions, has

γ =
−1

n+ (2m+ 2)
β =

1
n+ (2m+ 2)

(5.2.4)

and the behaviour of the solution in the transformed coordinates will possess

the conservation property of the solution in the non-transformed space.

A similarity solution of the PDE is defined as a solution of the PDE

which is invariant under the action of the scaling transformations described

in (5.1.3). From [28], it is known that the nonlinear diffusion equations

admit a family of self similar solutions of the form,

u(x, t) = tγφ
(x
tβ

)
(5.2.5)

24

Self-Similar Solutions

5.2.1 A Fourth Order Self Similar Solution

To construct the similarity solution,for example, for the fourth order case,

similarity variables y and v are introduced such that

y =
x

tβ
=

x̄

t̄β
v =

u

tγ
=

ū

t̄γ
(5.2.6)

where y and v are independent of λ and are invariant under (5.1.3). By

equation (5.2.4), for the fourth order case, β and γ have the values.

γ =
−1
n+ 4

β =
1

n+ 4
(5.2.7)

A similarity solution is sought of the form v = f(y), by obtaining an ordinary

differential equation for v in terms of y.

Transforming the left hand side of (5.1.4) gives

∂u

∂t
=

∂

∂t
(vtγ)

= tγ
dv

dt
+ vγtγ−1

= tγ
dv

dy

∂y

∂t
+ vγtγ−1

= tγ
dv

dy

(
−βx
tβ+1

)
+ vγtγ−1

= −βtγ−1y
dv

dy
+ vγtγ−1 (5.2.8)

To transform the right hand side of (5.1.4) into v and y, first consider

∂u

∂x
=
dy

dx

du

dv

dv

dy
(5.2.9)

From (5.1.3)

dy

dx
= t−β ,

du

dv
= tγ giving

∂u

∂x
= tγ−βv′ (5.2.10)

from which,
∂2u

∂x2
= tγ−2βv′′ (5.2.11)

25

Self-Similar Solutions

∂3u

∂x3
= tγ−3βv′′′ (5.2.12)

Then

∂

∂x

(

Self-Similar Solutions

Self-Similar Solutions

Figure 5.2.2: Distribution of the sixth order self similar solution

The initial data supplied to the program, at time t = 0 is given by

u(x, 0) =
1

120
[
4 − 16x2

]3

+
(5.2.23)

5.3 Scale Invariance of the Numerical Method

Self-Similar Solutions

PDE.

Figure 5.3.1: Invariance of the fourth order solution and mesh for 41 node

mesh

29

Numerical Results for the Self Similar Solution

Figure 6.0.1: Convergence of numerical solution to true solution with in-

creasing nodes, t = 0.0005

31

Numerical Results for the Self Similar Solution

Figure 6.0.2: Resolution of numerical solution at boundary with increasing

nodes, t = 0.0005

32

Numerical Results for the Self Similar Solution

Figure 6.0.3: Timestep dependence on the number of nodes in the mesh

33

Numerical Results for the Self Similar Solution

the numerical solution is diffusing to the exact solution with time.

6.1 Fourth Order Results

Dots represent approximate solution, and the line represents the exact so-

lution. Solutions are computed at

Numerical Results for the Self Similar Solution

Figure 6.2.1: Exact and approximate solutions for the sixth order problem.

35

Chapter 7

Behaviour of the Moving

Boundary

The occurrence of fronts is an interesting feature of the nonlinear diffusion

equations, where the front is the interface between positive values of the

solution, and zero values of the solution. This interface can possess three

kinds of behaviour. Firstly, the interface can move immediately, and if it

does so, it can either retreat or advance. Secondly, a waiting time scenario

can occur, where the interface remains stationary for a finite time, and then

starts to move. Thirdly the interface can wait forever. Prediction of the

behaviour of the moving front can be important in many of the physical

applications of the nonlinear diffusion equations outlined in Chapter Two.

These behaviours are dependent on the values of n and α. n is the

diffusion coefficient and represents the viscosity of the fluid film. The values

of n will influence the speed of the moving front. For example, a large value

of n represents a high viscosity of fluid which moves with slower velocity than

a low viscosity fluid. α represents the initial contact angle of the interface;

the larger the value of α, the shallower the initial contact angle, illustrated

in Figure (7.0.1).

Waiting time behaviour occurs when the solution undergoes an initial

36

Behaviour of the Moving Boundary

Figure 7.0.1: Change in contact angle for different alpha

redistribution behind the moving front, during which time the contact angle

of the boundary readjusts. As it does so the solution waits, until that time

when the angle reaches a value for which advancing or retreating behaviour

is possible. At this time the solution begins to move suddenly, following the

behaviour that the new contact angle dictates.

7.1 Fourth Order Case

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3

)
(7.1.1)

with

u =
∂u

∂x
= un

∂3u

∂x3
= 0 at x = b(t) (7.1.2)

and

u = u0(x) at t = 0 (7.1.3)

where x = b(t) represents the right hand moving behaviour, whose local

behaviour will be considered.

Previous work has shown that for n ∈ (0, 3), b(t) represents a boundary

moving at finite speed. In [10], Blowey et al. consider these values of n in

detail, with various values of α, and Figure (1.1) from [10], reproduced here

in Figure (7.1.1), illustrates their results.

37

Behaviour of the Moving Boundary

Figure 7.1.1: A summary of the possible small-time behaviours with respect

to n and α

7.2 Sixth Order Case

∂u

∂t
= − ∂

∂x

(
un
∂5u

∂x5

)
(7.2.1)

with

u =
∂u

∂x
=
∂3u

∂x3
= un

∂5u

∂x5
= 0 at x = b(t) (7.2.2)

and

u = u0(x) at t = 0 (7.2.3)

where x = b(t) represents the right hand moving boundary.

Flitton and King, [17], conducted both asymptotic and numerical studies

for the sixth order problem, and presented conjectures, relating to the value

of n, which are outlined below.

A moving front regime has been identified for 0 < n < 5/2, in which the

free boundary is expected to move immediately, and the region 5/3 < n <

5/2 has been identified as one in which the free boundary should advance

instantaneously. For 5/2 < n < 6, the free boundary is not expected to

38

Behaviour of the Moving Boundary

move, as is the case for n > 6.

However, since Flitton and King use different boundary conditions from

those used in this dissertation, we base the comparison of our results with

those produced by Langdon, on a fixed mesh discretisation, in [22]

39

Chapter 8

Numerical Results for the

Moving Boundary

To investigate the behaviour at the moving boundary, we take the initial

data

u0(x) = 5max
[(

9
16

− x2

)α

, 0
]
, α ∈ R+ (8.0.1)

Numerical Results for the Moving Boundary

8.1 The Fourth Order Case

For the fourth order case, where the small-time behaviour has been de-

termined [10], the C++ program is used to verify the cases in which in-

stantaneous advancing or retreating of the boundary is expected, since this

movement will be apparent even over small time scales. For the waiting-time

cases, this program was also run to verify that initially no movement of the

boundary occurs. The FORTRAN program is then used for these cases, to

see that the solution does eventually move after a finite waiting time.

The results presented here are chosen to provide examples of each type

of behaviour

8.1.1 Instant Advance

From 7.1, we expect an instant advance of the free boundary for α < 4/n,

and 2 < n < 3. Results for n = 2.5 and two different values of α are shown

in Figure (8.1.

Numerical Results for the Moving Boundary

Figure 8.1.1: Advancing moving front with n = 2.5, alpha = 0.5, and n =

2.5, alpha = 1.4

Figure 8.1.2: Advancing moving front for n = 1.0, alpha ∈ (0.5, 1.0)

42

Numerical Results for the Moving Boundary

(8.1.3).

Figure 8.1.3: Advancing moving front for n = 1.0, alpha = 0.7, run to final

time 0.002

8.1.2 Instant Retreat

The conjectures in 7.1, suggest an instant retreat of the free boundary for

and 2 < α < 3/n. One of the results obtained supporting this is presented

here.

Figure (8.1.4), shows the retreat of the solution for n and α satisfying

2 < α < 3/n. As for the advancing case, different values of α for the same

n were also investigated, and the results in Figure (8.1.5) suggest that the

initial velocity of the boundary is again decreasing as α increases.

In Figure (8.1.6), two of the cases shown in Figure (8.1.5), were run with

the FORTRAN program, and some interesting behaviour can be seen. For

the smaller α value, the free boundary is seen to retreat initially and then

advance. This suggests that for the other cases, this too is happening only

on a much longer timescale than has been investigated here.

43

Numerical Results for the Moving Boundary

Figure 8.1.4: Retreating moving front for n = 1.0, alpha = 2.5

Figure 8.1.5: Retreating moving front for n = 1.0, alpha ∈ (2.0, 3.0)

44

Numerical Results for the Moving Boundary

Figure 8.1.6: Retreating moving front for n = 1.0, alpha =2.2, and n = 1.0,

alpha = 2.8

8.1.3 Waiting Time Behaviour

Numerical Results for the Moving Boundary

and time constraints meant that a comprehensive study of all possible cases

could not be performed. As for the fourth order case, we take initial data

(8.0.1).

The possible behaviours for the cases n = 0.5 to n = 2.5 were considered

in detail. The findings are summarised in Figure

Figure 8.2.1: Table summarising behaviour observed for n ∈ (0.5, 2.5) and

alpha ∈ (0.5, 3.5)

It is clear that the behaviour suggests that a change is occurring for

α ∈ (2, 2, 5). This was investigated further, and our results are presented

for the cases n = 0.5, and n = 2.0, in Figures (8.2.2), and (8.2.3). The

results were run for 500 timetseps with a step size 10−12. The number of

timesteps was limited in order to gauge more information about the initial

movement of the boundary. The figures suggest that upto a certain value

of α, the solution advances instantaneously. Beyond this value, the results

show that the solution starts to retreat initially before advancing. As the

value of α increases beyond this point, the solution retreats for longer before

advancing until, for the length of time the solutions were run, no subsequent

advance can be seen. Investigations carried out as to the particular value

of α for which the solution first starts to retreat, suggests that this value

of alpha decreases as n increases, although for more conclusive results the

47

Numerical Results for the Moving Boundary

solutions should be computed with more variation of step size, and number

of nodes in the mesh.

Numerical Results for the Moving Boundary

Numerical Results for the Moving Boundary

are present for n = 5, but not for any other values of n. Further experiments

showed that as α was increased the behaviour of the moving front became

smoother until no humps could be seen at all for α > 0.6. While in the

case n = 5.0 solutions matched those on the fixed mesh, for n larger, they

did not. A possible reason for this is the conjecture that for sufficiently

large values of n, the behaviour of the solution is entirely determined by α,

and since the numerical method can never resolve α exactly, with more and

more time steps as the moving mesh repositions nodes at the boundaries, the

approximation to α changes continously. Based on this a further conjecture

was proposed that the numerical scheme may not converge i.e. the problem

itself could be an ill posed one [23].

Figure 8.2.4: Behaviours observed in the case n = 5.0

Interestigly, formation of the humps in the solution profile was also seen

50

Numerical Results for the Moving Boundary

Figure 8.2.5: Behaviours observed in the case n = 7.0

51

Numerical Results for the Moving Boundary

Figure 8.2.6: Behaviours observed in the case n = 9.0

52

Numerical Results for the Moving Boundary

in the cases α = 0.1, and smaller values of n = 1.0, n = 3.0. These results

did not concur with those obtained on the fixed mesh. These results warrant

further investigation as they may well be spurious.

Figure 8.2.7: Humps in the solutions for n = 1.0, and n = 3.0

53

Chapter 9

Conclusions and Further Work

equations, and similarity solutions to the nonlinear diffusion equations were

constructed. In Chapter Six some numerical results to the self similar solu-

tion were presented and matters relating to timestep size and convergence

with increasing nodes were investigated. Chapter Seven described possi-

ble behaviours of the moving boundary of the solution, and discussed the

conjectures surrounding them In Chapter Eight, we applied our numerical

method to the fourth and sixth order conjectures to see whether the moving

mesh method could accurately resolve the features of the moving boundary.

9.2 Remarks and Further Work

Here we look at aspects not fully covered in this dissertation.

9.2.1 Scale Invariance

In Chapter Five, we remarked that figure (5.3.1), suggested that the moving

mesh method possessed the same scale invariance properties as the PDE it

was solving, and that this was a desirable property for the numerical scheme

to have. For the purposes of this dissertation, the very small timesteps used

meant that scale invariance could be assumed. It should be pointed out,

however, that the numerical scheme is not strictly scale invariant. The

ODE for the new node positions,

Ẋ = F (X) (9.2.1)

recovered in Chapter Four, is invariant under the mapping (5.1.3), as is the

Forward Euler discretisation of (9.2.1) given by

XN+1 −XN

tN+1 − tN
= F (XN) (9.2.2)

However this is not true of the local truncation error ,(LTE), of (9.2.1)

LTE =
XN+1 −XN

tN+1 − tN
− F (XN) (9.2.3)

55

Conclusions and Further Work

which is not scale invariant under the mapping described in equation ().

In [6], a timestepping method with a scale invariant LTE is outlined, by

Conclusions and Further Work

[5], and investigations of the solution error in the L1 norm were carried

out. In the case of the Fourth Order Diffusion Problem, these illustrated a

fourth order accuracy in one dimension, using a uniform initial mesh, with

diffusion coefficient n = 1. It would be appropriate to consider investigating

the accuracy of the solution for the Sixth Order Problem in a similar manner.

9.2.4 Initial Grid Distribution

For the purposes of this dissertation, a uniform initial distribution of the

nodes was used, where the distance between each of the nodes in the mesh

was equal.

We could investigate how the solution varies, if at all, with the ini-

tial mesh used. For example, the equidistribution algorithm outlined by

Baines [4], could be used, to start with an initial mesh in which the nodes

are placed so the mass is equal in each cell.

It was remarked in Chapter Six, that the use of mass as a monitor

function, resulted in the nodes following the moving boundary, but did not

necessarily seem to increase the distribution of nodes to these areas. To

remedy this, we could start with an initial mesh, in which the nodes were

more clustered around the boundary, for example, by requiring that smaller

amounts of mass are placed in this region. An extension to the method

used in this dissertation, is then to investigate the moving front, in the sixth

order case, where, as noted in Chapter Eight, worsening resolution at the

boundaries for increasing values of the diffusion coefficent could mean that

the numerical schemes do not converge for these situations. If we start with

an initial mesh with improved resolution of the moving front, this could

result in improved resolution of the contact angle α, and may improve the

solutions obtained in Chapter Eight.

57

Conclusions and Further Work

9.2.5 Extension to Further Applications

Further work could consider the application of this moving mesh method

to problems in two dimensions, in order to better apply them to examples

considered in Chapter two. One such possibilty would be to consider the

problem of oxygen diffusion in tumour growth, and apply the method con-

sidered here to a two dimensional radial proble, which would better model

the distribution of a tumour.

58

Bibliography

[1] D.G.Aronson. Some Problems in Nonlinear Difffusion, Editors:

A.Fasano, M.Primiceno, Lecture Notes in Mathematics,1224 Springer-

Verlag, New York (1986)

[2] D.G.Aronson, H.F.Weinberger. Nonlinear Diffusion in Population Ge-

netics and Nerve Pulse Propagation, Partial Differential Equations

and Related Topics, Lecture Notes in Mathematics,446 Springer-Verlag,

New York (1975), 5-49

[3] J.P.Armitage, F.S.Garduno, P.K.Maini, R.A.Satnoianu. Travelling

Waves in a Nonlinear Degenerate Diffusion Model for Bacterial Pat-

tern Formation, Discrete and Continuous Dynamical Systems - Series

B,1 (2001), 339-362

[4] M.J.Baines. Grid Adaptation via Node Movement, Applied Numerical

Mathematics,26 (1998), 77-96

[5] M.J.Baines, M.E.Hubbard, P.K.Jimack. A Moving Mesh Finite Ele-

ment Algorithm for the Adaptive Solution of Time-Dependent Par-

tial Differential Equations with Moving Boundaries, Applied Numerical

Mathematics,54 (2005), 450-469

[6] M.J.Baines, M.E.Hubbard, P.K.Jimack, A.C.Jones. Scale-invariant

Moving Finite Elements for Nonlinear Partial Differential Equations in

Two Dimensions. Applied Numerical Mathematics,56 (2006), 230-252

59

[16] J.Crank, R.S.Gupta. A Moving Boundary Problem Arising from the

[26] T.G.Myers. Thin Films with High Surface Tension, SIAM Review,40

(1988), 441-462

[27] T.G.Myers. Surface Tension Driven Thin Film Flows, Mechanics of

Thin Film Coatings,Wiley, 1996

[28] N.F.Smyth and J.M.Hill. High Order Nonlinear Diffusion IMA Journal

of Applied Mathematics,40 (1988), 73-86

62

