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argument we choose η = k. The space of all linear combinations of the fundamental solutions in
Ω+

e is denoted by Ve.
Remark 2.2. One could alternatively approximate the scattered field us by a multipole ex-

pansion of the form

us(r, θ) ≈
Ne∑

m=−Ne

αmH(1)
m (kr)eimθ .

This was proposed by Stojek in [22]. The disadvantage of this expansion is that when Γe is anything
other than a circle about the origin, severe numerical stability problems arise at large wavenumber
due to the huge dynamic range of Hankel functions at large m. Fundamental solutions do not
suffer from this problem, hence allow more flexibility (e.g. see Section 6.2).

Combining the above basis sets, the trial space V of the FEM is the space of functions v
such that vi := v|Ei

∈ Vi, ∀i, and ve := v|Ω+
e

∈ Ve. It is useful to express the number of basis
functions in each subdomain as a multiplier of a common factor N . Let Ni = niN ,8d
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We now derive a matrix representation of J(c). Consider first the internal boundary Γij be-

tween two elements Ei and Ej , within which the basis functions are g
(i)
1 , . . . , g

(i)
Ni

and g
(j)
1 , . . . , g

(j)
Nj

.
We assume these functions and their derivatives are also defined on Γij . Furthermore, denote by
ξτ , τ = 1, . . . , mij quadrature points on Γij with corresponding weights ωτ > 0 appropriate for
integration with respect to arc length. Then from Γij the contribution to J(c) is

∫

Γij

k2

∣∣∣∣∣∣

Ni∑

p=1

c(i)
p g(i)

p (s) −
Nj∑

p=1

c(j)
p g(j)

p (s)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

Ni∑

p=1

c(i)
p ∂νg(i)

p (s) −
Nj∑

p=1

c(j)
p ∂νg(j)

p (s)

∣∣∣∣∣∣

2

ds

≈
∥∥∥∥
[
Wij

Wij

] [
kAi −kAj

∂νAi −∂νAj

] [
c(i)

c(j)

]∥∥∥∥
2

2

,

where for each i = 1, . . . , q, Ai is the matrix with elements (Ai)τp = g
(i)
p (ξτ ), and (∂νAi)τp =

∂νg
(i)
p (ξτ ) is the matrix of normal derivatives. Quadrature weights no



Let D be a simply connected domain with analytic boundary ∂D. Let us be the unique
solution [9] to the Helmholtz equation (1.1) in R2\D and the Sommerfeld condition (1.3) with
boundary value data us = f on ∂D. The idea of the MFS is to choose a closed curve ΓF ⊂ D
some distance inside D, and approximate us by a single-layer potential of the form

us(x) ≈
∫

ΓF

i

4
H

(1)
0 (k|x − y|)g(y)dsy.



We now claim that the eigenvalues ŝη(m) and their derivatives with respect to the outer disc
radius r decay exponentially with a rate that depends on the radius ratio of R to r.

Lemma 4.2. For η 6= 0 and ǫ > 0 arbitrarily small there exist constants cs > 0 and Cs > 0
such that for m ∈ Z both the following hold,

cs

( r

R

)−|m|
≤ |ŝη(m)| ≤ Cs

( r

R

)−|m|
, (4.3)

∣∣∣∣
∂

∂r
ŝη(m)

∣∣∣∣ ≤ Cs

[( r

R

)
− ǫ

]−|m|
, (4.4)

where cs and Cs depend on k, R and r, and Cs additionally depends on ǫ.

Proof. Consider the three terms in (4.2). Large-order asymptotics for Bessel functions [1,
9.3.1] yield

Jm(kR) ∼ 1√
2πm

(
ekR

2m

)m

, Ym(kr) ∼ −
√

2

πm

(
ekr

2m

)−m

for fixed z and m → ∞. Since Hm(z) = Jm(z) + iYm(z) it follows that Hm(z) ∼ iYm(z) and
therefore

H(1)
m (kr)Jm(kR) ∼ − i

πm

(
R

r

)m

,

H(1)
m (kr)Jm−1(kR) ∼ − 2i

ekRπ

(
R

r

)m

,

H(1)
m (kr)Jm+1(kR) ∼ −ekRi

2π

1

m2

(
R

r

)m

.

Inserting these into (4.2) we get

ŝη(m) ∼ 1

2eR

(
R

r

)m

+
iη

2m

(
R

r

)m

∼ 1

2eR

(
R

r

)m

.

Together with the reflection laws J−m(z) = (−1)mJm(z) and H
(1)
−m(z) = (−1)mH

(1)
m (z) the upper



We will also need the Fourier series for this choice of g, which we note converges only distri-
butionally. Denote by ĉ the discrete Fourier transform of the coefficient vector c =

[
c1, . . . , cN

]

defined by

ĉs =
1

N

N∑

j=1

cje−isφj , −N

2
< s ≤ N

2
.

Then applying our ansatz to the definition of the Fourier coefficents,

ĝ(m) =
1

2π

N∑

j=1

cjeimφj =
N

2π
ĉ(m mod N), (4.7)

where m mod N denotes the unique integer lying in the range −N/



as Ni → ∞. Furthermore, there exist functions ṽ ∈ Vi such that ‖u − ṽ‖L∞(Ei) = O(τ−Ni ) and
also

‖∇u − ∇ṽ‖L∞(Γij) = O(τ−Ni )

for every 1 < τ < ρi as Ni → ∞.
The rates ρi may be computed; they are the conformal distance of the nearest singularity in

u to (a conformal map of) the domain Ei [5].
To estimate the convergence on Γe of the fundamental solutions approximation to the scattered

field us we consider (as in Section 4) only the case of concentric circles.2 The source points for
the fundamental solutions are given by yj = Reiφj , j = 1, . . . , Ne with φj = 2πj

Ne
, and the exterior

circle Γe has radius r. We impose maxi |pi| < R < r. The proof of the following theorem is given
below in Section 5.1.

Theorem 5.2. Let ǫ > 0 and ǫ̃ > 0 be arbitrarily small. Define ρ := mini
r

|pii�\ e





Using (5.4) we can now estimate E2
u as

E2
u ≤ C

∑

m 6∈[−Ne
2

+1,..., Ne
2

]

ρ−2|m|
ε ≤ Cρ−Ne

ε . (5.7)

In order to estimate E2
s we rewrite it as

E2
s =

Ne
2∑

n=−Ne
2

+1

ĝ(n)2
∑

b∈Z\{0}
ŝη(bNe + n)2.

Bounding the inner sum and substituting |ĝ(n)| =
∣∣∣ ûs(n)

ˆ
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Lemma 7.1. Let c̃LS be defined by the above perturbed problem. Then it holds that

td[vLS ] ≤ td[ṽLS ] ≤ td[vLS ] + C(2 + ‖cLS‖2 + ‖c̃LS‖2)ǫmach (7.2)

Proof. Using the property that cLS minimizes the unperturbed least-squares problem, and
the triangle inequality, results in

‖W AcLS − W b‖2 ≤ ‖W Ac̃LS − W b‖2 ≤ ‖(W A + E)c̃LS − (W b + f)‖2 + C(1 + ‖c̃LS‖2)ǫmach.

Exchanging perturbed and unperturbed quantities gives similarly

‖(W A + E)c̃LS − (W b + f)‖2 ≤ ‖W AcLS − W b‖2 + C(1 + ‖cLS‖2)ǫmach.

Combining the two estimates shows (7.2).
Thus, if the coefficient norms at the approximate and exact minima are small, the numerical

least-squares solution must converge at the same exponential rate (Theorem 5.4) as the exact
least-squares solution.

In [4] the blow-up of the coefficient vector of fundamental solutions approximations was in-
vestigated for interior Helmholtz problems. Now we prove an analogous theorem that will help us
choose a numerically useful fundamental solutions curve.

Theorem 7.2. Consider a sequence of fundamental solutions approximations, each of the

form v(x) =
∑Ne

j=1 c
(e)
j

(
i
4

∂
∂ν(yj) H

(1)
0 (k|x − yj |) − η

4 H
(1)
0 (k|x − yj |)

)
, with growing numbers Ne

(Ne even) of charge points, that attains the error bound from Theorem 5.2 as Ne → ∞. Let each

coefficient vector be written c(e) :=
[
c

(e)
1 , . . . , c

(e)
Ne

]T

. If R > maxi |pi|, then the sequence of norms

‖c(e)‖2 is bounded independently of Ne.
Proof. In the following C > 0 denotes an unspecified constant that depends on k, R, r and ǫ

but not on Ne and may change throughout the proof. By assumption maxi |pi| < R < r.
From (5.2) and (5.5) it follows that

k
√

2πr|ûs(m) − ŝη(m)ĝ(m)| ≤ Cτ−Ne , m ∈ N

where τ = min{
(

r
R

)
, ρ

1/2
ε } (note that by Remark 5.3, ǫ̃ = 0 in Theorem 5.2 is possible since we

only use the estimate for the function and not for the normal derivative). It follows that

|ĝ(m)| ≤ |ŝη(m)|−1
(

Cτ−Ne (2πr)−1/2 + ûs(m)
)

, m ∈ N

Now restrict m to the interval [−Ne/2 + 1, . . . , Ne/2]. If R >
√

r maxi |pi| then for sufficiently



From (4.7) it follows that ĝ(m) =



Full Field (Real Part)

 

 



% Exponentially accurate sound-soft time-harmonic scattering from the square

k = 50; % Wavenumber

r = 1.0; % Radius of outer artificial circle

M = 100; % Number of quadrature points on each segment

N = 90; % Number of basis funcs in each corner subdomain

a = 0.5; % Half-size of the square

R = sqrt(0.5); % Radius of the fundamental solutions curve

% Define segments...

s = segment.polyseglist(M, [1i*r 1i*a a+1i*a a r]); % straight

s = [s(1:3) segment(3*M, [0 r 0 pi/2])]; % add arc

s = [s rotate(s, pi/2) rotate(s, pi) rotate(s, 3*pi/2)]; % add 3 copies

sart = s([1 4 5 8 9 12 13 16]); % list of all artificial boundaries

sext = s([4 8 12 16]); % segments forming outer circle

% Define domains...

for j=1:4, d(j) = domain(s(1+mod(4*(j-1)+[0 1 2 12 3],16)),[1 1 1 -1 1]); end

ext = domain([], [], sext(end:-1:1), -1);

sart.setmatch([k -k], [1 -1]); % matching conditions between elements

% Basis functions...

nuopts = struct(’type’,’s’, ’cornermultipliers’,[0 0 1 0 0], ’rescale_rad’,1);

for j=1:4, d(j).addcornerbases(N,nuopts); end % frac-order FB

Z = @(t) R*exp(2i*pi*t); Zp = @(t) 2i*pi*R*exp(2i*pi*t); % fund soln curve

ext.addmfsbasis({Z, Zp}, N, struct(’eta’,k, ’fast’,2, ’nmultiplier’,2.1));

p = scattering(ext, d); % now set up problem, solve, and plot...

p.setoverallwavenumber(k);

p.setincidentwave(-pi/6);

p.solvecoeffs;

fprintf(’least-square err = %g, coeff norm = %g\n’, p.bcresidualnorm, norm(p.co))

p.showfullfield(struct(’bb’,[-1.5 1.5 -1.5 1.5], ’dx’,0.02));

Fig. A.1. MATLAB code for sound-soft scattering from a square using MPSpack toolbox.
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