


Abstract

In this thesis we consider a class of conservation based moving mesh methods ap-

plied to hyperbolic conservation laws. We mainly concentrate on the one dimensional

case with the examples of the linear advection equation, inviscid Burgers' equation

and the Buckley-Leverett equation. The moving mesh methods are generated us-

ing the conservation of mass as a method for determining the mesh velocity at the

computational nodes. We use the notion of the reference space as a mathematical

tool to analyse the moving mesh methods allowing us to show the accuracy, stability

conditions and convergence. In addition we use the reference space as a technique

for constructing new moving mesh methods which share the accuracy and stability

properties of the �xed mesh scheme they are derived from. At the end of the thesis

we use the knowledge gained from the scalar conservation laws to construct moving

mesh methods for the isothermal equations.
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Chapter 1

Introduction

A class of Partial Di�erential Equations (PDEs) known as conservation laws fre-

quently arises in physics whenever a conserved quantity is present. Generally the

conservation laws which arise from physical phenomena are nonlinear and as a result

it is not possible to �nd an analytic solution. As a result, numerical approximations

are required.

Standard numerical techniques rely on static meshes to computationally solve

conservation laws but this is often ine�cient. The simplest technique of solving on

a uniform static mesh performs poorly due to the need to have a large number of

nodes to correctly resolve discontinuities. Adaptive static mesh techniques, known

as h-re�nement methods, improve this by only increasing the resolution in regions

where necessary but su�er from the increased computational cost of calculating

where the mesh needs to be re�ned and the fa8 pl-21.66wsh needs
aby



expensive while an improvement over non-adaptive meshes may still have a high

computational overhead. Instead, more recent research has focused on moving mesh

methods known as r-re�nement methods. R-re�nement methods are adaptive meth-

ods in which the computational mesh is moved in an attempt to automatically re�ne

the mesh in an advantageous way without having to introduce more nodes.

One particular class of r-re�nement methods of note for use with conservation laws

is conservation based moving mesh methods. These methods work by considering

a conserved quantity and using the local conservation of this quantity as a method

for positioning or �nding the velocity of the mesh nodes. As such they appear to be

a natural �t for conservation laws which are also derived from conserved quantities.

It is these conservation methods that will be the focus of this thesis.

Chapter 2 will provide a summary of prior knowledge required in the rest of

the thesis as well as an overview of some of the work that has been done in the

�eld. The chapter is split into three sections, the �rst focuses on the conservation

laws themselves while the second and third both provide information regarding r-

re�nement methods.

In Chapter 3 the background work from Chapter 2 will be combined to derive

the general class of schemes studied in later chapters. This derivation will be done

step by step to show how standard Eulerian PDEs can be adapted for use with a

Lagrangian conservation based moving mesh scheme. Particular care will be taken

concerning the choices made to derive the schemes as well as potential issues such

as boundary conditions. At the end of the chapter the general framework will be

demonstrated by applying it to several test problems.
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Chapter 4 introduces the notion of a `reference space' as an analytical tool for

analysing the class of conservative moving mesh methods considered. Using the

reference space we will discuss some methods for �nding the accuracy, stability

and convergence of the conservation based moving mesh schemes. Finally numerical

results are carried out to indicate the numerical order of convergence of a test scheme.

The main aim of Chapter 5 is to show how standard conservative Eulerian �nite

di�erence schemes can be adapted to produce new moving mesh schemes. The

bene�t of this is that the properties of the resulting moving mesh schemes are easily

determined from the properties of the generating Eulerian scheme. The end of the

chapter will compare some generated Lagrangian schemes with the Eulerian schemes

used to derive them.

In Chapter 6 we will give a brief introduction to some of the problems faced when

trying to extend the scheme to systems of hyperbolic conservation laws. The added

issues will lead to a slightly modi�ed method in which a more complex mesh equation

is found. This modi�ed scheme is applied to the isothermal Euler equations and the

resulting mesh trajectories are shown. The end of the chapter will discuss possible

improvements that could be made to improve the scheme for systems of equations

as well as the work required to use the method for the full Euler equations of uid

dynamics.

The �nal chapter of the thesis will provide a summary of all of the work done.

In addition there will be a discussion of potential future work regarding adapted

schemes, systems of equations and higher dimensional problems.

The novel work done in this thesis appears in chapters 3-6. These original aspects

are:

3



� In Chapter 3 we give a more in-depth discussion of how Eulerian boundary

conditions are applied to Lagrangian schemes than appears in the literature.

� The notion of the transform to reference space from Chapter 4 is taken from

the Moving Mesh Partial Di�erential Equation (MMPDE) methods but is

applied as an analytical tool for the �rst time to �nd accuracy, stability and

convergence.

� Chapter 5 discusses a novel approach to generating new moving mesh methods

from existing �xed mesh conservative Eulerian methods.

� The attempt to solve the isothermal equations in Chapter 6 provides a moving

mesh which does not tangle.
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Chapter 2

Background

In this chapter we give an overview of the previous work done in both hyperbolic

conservation laws and moving mesh methods. This background covers both related

work which has already been done, as well as background knowledge required for

application of the results found.

2.1 Hyperbolic Conservation Laws

Hyperbolic conservations law arise in many areas of physics, notably when con-

served quantities are present in the system being modelled. In the Eulerian descrip-

tion, conservation laws can often be expressed as time-dependent systems of partial

di�erential equations (PDEs) with a particularly simple structure.



variable andx and t are the spatial and time coordinates respectively [LeV92].

Note that in this thesis we are using the subscript notation to represent partial

derivatives. Thereforeux is equivalent to @u
@x and utt = @2u

@t2 .

In this work the system of equations (2.1) is assumed to be hyperbolic. This

implies that the Jacobian matrix of the ux function, f 0(u), has a complete set of

m linearly independent real eigenvectors for each value ofu.

To form a complete problem the PDE (2.1) must also be equipped with an initial

condition u0(



that the case where� n � f 0(u)j@
 = 0 is not considered here as this is a special case.

Further discussion of this special case can be found in Section 3.2.

In general, conservation laws which arise from physical phenomena have a nonlin-

ear ux function and are therefore themselves nonlinear. It is not generally possible

to derive an exact solution for these nonlinear systems and it is therefore necessary

to construct and analyse numerical methods to �nd approximate solutions.

2.1.1 Derivation of Conservation Laws

While conservation laws are often written in the di�erential form g 0 G(



Note that while equation (2.5) was derived here for the scalar density function,

the more general balance equation has the same form if the integrand,u(x; t ), is a

vector of conserved quantities and the ux function,f (u(x; t )), is a function of the

components ofu(x; t ).

The di�erential form of the conservation law (2.1) introduced in the beginning of

this chapter can be derived from the balance law (2.5) by �rst integrating over time.

Integrating equation (2.5) over the time interval [t1; t2] yields

Z t2

t1

d
dt

� Z x2

x1

udx
�

dt +
Z t2

t1

[f (u)]x2
x1

dt = 0; (2.6)

and using the fundamental theorem of calculus and rearranging gives

Z x2

x1

[u]t2
t1

dx +
Z t2

t1

[f (u)]x2
x1

dt = 0: (2.7)



where it is noted that the intervals [x1; x2] and [t1; t2] have been chosen arbitrarily.

Hence it follows that the integrand of equation (2.10) must be identically zero leading

to the equation

u(x; t )t + f (u(x; t ))x = 0; (2.11)

which we note is the di�erential form of the conservation law (2.1).

Remark 2.1.2. The di�erential form (2.1) is not the only di�erential form of

the conservation laws, it is a special form referred to as the conservation form.

Another key di�erential form that the reader should be aware of is the non-

conservative form. This form takes a nonlinear conservation law and rewrites

it as though it is linear by using the chain rule on the ux term to obtain an

explicit u(x; t )x . The non-conservative or `quasilinear' form associated with

the conservation law (2.1) is

u(x; t )t + f 0(u(x; t ))u(x; t )x = 0: (2.12)

2.1.2 Mathematical Di�culties

Hyperbolic conservation laws have several mathematical di�culties which must

be overcome in order for a `correct' solution to be found. The main concerns are

the di�erentiability of the solution and the existence of a unique solution.

Discontinuous Solutions

Discontinuous solutions are a major mathematical di�culty which arises when

considering hyperbolic conservation laws. Since the problems are often stated in the

di�erential form (2.1) it seems that the conservation law cannot hold for discontin-

uous solutions: however by contrast there is no assumption on the smoothness of

9





Using the notion of characteristics we can consider how the structure of the ux

function, f (u(x; t )), a�ects the solution u(x; t ). If f (u(x; t )) is linear then it is clear

from equation (2.15) that the characteristic trajectories are independent of the value

of the solution,u(x(t); t), along that characteristic line. However, if the ux function

is nonlinear then the characteristic trajectory is dependent on theu value carried

by the characteristic line.

Consider the conservation law (Inviscid Burgers' Equation)

ut +
�

1
2

u2

�

x

= 0; (2.16)

for which f (u) = 1
2u2 and where we have left out the independent variables,x and

t, for ease of reading. Suppose that (2.16) is coupled with the initial condition

u0(x) = � x; x 2 [� 1; 1]; (2.17)

and the boundary conditions

u(� 1; t) = 1 and u(1; t) = � 1: (2.18)

The resulting characteristic velocity is given by

x0(t) = f 0(u) = u; (2.19)

where u is a constant on the trajectories (characteristics). Figure 2.1 shows the

trajectories of some of the characteristics in thex; t plane.

As can be seen in Figure 2.1, at timet = 1 the characteristic lines cross, meaning

that the solution becomes multivalued for time,t > 1 and the di�erential equation

11
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0.8
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Figure 2.1: Characteristics crossing after timet = 1 causing the solution to become
multivalued. This is not a physically valid solution to the problem (2.16)-(2.18).

(2.16) is invalid (the second part of this section will introduce the idea of entropy

solutions and show that this multivalued solution is not physically relevant for the

purposes of this example). However it is accepted that the actual solution to the

problem (2.16)-(2.18) for timet > 1 is given by

u(x; t ) =

8
<

:
1 x < 0

� 1 x > 0
; (2.20)

where a discontinuity is now present atx = 0. The reason why this is the accepted

physically relevant solution will be presented in the next subsection. The integral

form (2.5) is more useful is this situation.

The example (2.16)-(2.18) demonstrates that, for nonlinear conservation laws, dis-



should know is the weak form. To �nd the weak form associated with the general

1D conservation law (2.1) �rst multiply the conservation law by a once di�erentiable

compactly supported test function� (x; t ) 2 C1
0(R� R) and then integrate over space

and time. This yields

Z 1

0

Z 1

�1
(�u t + �f (u)x ) dxdt = 0: (2.21)

Using integration by parts on equation (2.21) to move the derivatives from the

solution variables to the test function yields

Z 1

0

Z 1

�1
(� tu + � x f (u)) dxdt +

Z 1

�1
� (x; 0)u(x; 0)dx = 0; (2.22)

where it is noted that the boundary terms have disappeared due to the compact

support of the test function.

Uniqueness of the Solution

Recall the example (2.16)-(2.18) from the �rst part of this section. In Figure 2.1

it appears that the characteristics of the problem cross and therefore the solution

becomes multivalued. However, we stated that the physically relevant solution for

times t > 1 was (2.20). Figure 2.2 shows thex; t plane characteristic plot for this

discontinuous solution.

The problem arises because after timet = 1 there is no longer a classical solution

to the problem and we must instead turn to the weak form (2.22). The issue with

this is that the weak form does not have a unique solution and therefore in order to

�nd the physically relevant solution of the problem another condition is required.

13
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Figure 2.2: Characteristic plot with a discontinuity forming at time t = 1. This is
the physically relevant characteristic solution to the problem (2.16)-(2.18).

The extra condition required to �nd the physically relevant solution can be de-

rived from the notion of a `vanishing viscosity solution'. This assumes that the

conservation law is the limiting case of the viscous PDE

ut + f (u)x = �u xx ; (2.23)

as � ! 0. The argument follows that since (2.23) has a classical solution for all

� > 0, the physically relevant solution to the conservation law (2.22) should be the

solution that is the limit of the classical solution of (2.23) as� ! 0. The solution

that satis�es this restriction is called the `entropy solution'.

In section 4.5.1 we look more in depth at vanishing viscosity solutions as a method

for analysing numerical schemes. In this introductory chapter it is simply noted that

this notion of a vanishing viscosity solution leads to a variety of entropy conditions

which when applied alongside the weak form of the conservation law (2.22) leads to

a unique solution. The most easily applied entropy condition for scalar conservation

laws and general ux functions,f (u), is due to Oleinik [Ole63].

Theorem 2.1.3 (Oleinik Entropy Condition) . u(x; t ) is the entropy solution of the

14



Figure 2.3: Sketch of a discontinuous solution where� = 0 (red) and two viscous
solutions � = 0:05 (blue) and� = 0:1 (black).

weak form conservation law (2.22) if all discontinuities satisfy the condition that

f (u) � f (ul )
u � ul

> s >
f (u) � f (ur )

u � ur
(2.24)

for all u betweenul and ur , whereul is the limit of the solution as the discontinuity

is approached from the left,ur is the limit when approached from the right ands is

the shock speed.

Applying the entropy condition (2.24) to the test problem (2.16)-(2.18) con�rms

that (2.20) is the physically relevant solution.

The shock speed noted in the entropy condition is found by considering the

Rankine-Hugoniot jump condition. This is a relationship between the shock speed,

s, and the statesul and ur



which simpli�es to

s =
f (ul





2.1.3 Numerical Di�culties

In the previous section we considered some of the mathematical di�culties which

arise when attempting to solve hyperbolic conservation laws. In this section we

consider how these mathematical di�culties cause further numerical di�culties when

we attempt to solve the conservation laws with numerical approximations.

Approximating Shocks

The main issue that arises is due to the fact that hyperbolic conservation laws

can have discontinuous solutions.

As discussed in section 2.1.2, the di�erential form of the conservation law (2.1)

does not hold at the discontinuity since the solution does not have a derivative at

this point. Since many standard numerical approaches are based on the di�erential

form of the conservation law it follows that these are equally poor at approximating

the discontinuity.

Consider �nite di�erence methods as an example. In Figure 2.6 we have plotted

the results for the �rst order upwind method, the second order Lax-Wendro� scheme

and the exact solution. More information concerning these schemes can be found in

[LeV92].

The schemes shown in Figure 2.6 are representative of schemes of their respective

orders. The �rst order upwind scheme shows that numerical di�usion leads to a

smoothed out discontinuity and therefore poor accuracy in the surrounding area.

This is very common behaviour in �rst order schemes and often leads to a need for

higher accuracy. The second order Lax-Wendro� method captures the discontinuity

very e�ectively but at the cost of introducing spurious oscillations. As with the

18
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if it has the form

un+1
j = un

j �
� t
� x

�
F (un

j � p; un
j � p+1 ; � � � ; un

j + q) � F (un
j � p� 1; un

j � p; � � � ; un
j + q� 1)

�
(2.29)

whereF is the numerical ux function with p + q + 1 arguments and is consistent

with the ux function f (u) in the sense thatF (u; u; :::; u) = f (u). This form is a

discrete equivalent to the balance law (2.5) as shown in [MM05].

The above de�nition however only ensures that discontinuities move with the

correct speed and does not ensure that the scheme converges to the entropy solution.

To ensure convergence to the entropy solution a monotone scheme or an e-scheme

is required. These schemes are discussed in greater detail in [Tor99].

In this section we have discussed the issues that surround the attempt to ac-

curately approximate discontinuities in the solution. The fact that higher order

schemes, which better approximate these discontinuities, can lead to instability mo-

tivates discussion of the next numerical di�culty.

Scheme Stability

As mentioned in the previous section, �rst order schemes often end up being

insu�ciently accurate around discontinuities in the solution whereas higher order

schemes tend to develop spurious oscillations which can lead to instability.

Since the issue of spurious oscillations arises frequently, many methods have been

developed in an attempt to mitigate their e�ect. One such attempt is to de�ne the

notion of a monotonicity preserving scheme. These are schemes which do not allow

new extrema in the solution to form and are therefore non-oscillatory. The formal

de�nition of monotonicity preserving schemes is as follows.
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De�nition 2.1.5 (Monotonicity Preserving Scheme). [Wes01] A numerical scheme

is said to be monotonicity preserving if for every non-decreasing (non-increasing)

initial condition u0(x) the numerical solution at all later instants un
j ; n 2 N is non-

decreasing (non-increasing).

While de�nition 2.1.5 does help describe schemes that have the desired property

of not introducing spurious oscillations, it is also not very useful for actually de-

termining if a scheme is monotonicity preserving or not. To this end a variety of

methods have been developed to test if a scheme is monotonicity preserving. In

this section we only focus on the stricter condition that schemes are Total Variation

Diminishing (TVD).

De�nition 2.1.6 (Total Variation) . The Total Variation of a numerical solution at

time t = n� t is given by

TV(un ) =
X

j

�
�un

j � un
j � 1

�
� : (2.30)

The total variation can easily be seen to increase if the solution is oscillatory

and decrease if the solution becomes strictly increasing (decreasing). The fact that

oscillations are not desired motivates the notion of a TVD scheme.

De�nition 2.1.7. A scheme is de�ned to be Total Variation Diminishing (TVD) if

TV(un+1 ) 6 TV(un ) 8n; (2.31)



the TVD framework is a result by Harten [Har83] which gives certain conditions a

scheme must meet to be TVD.

Theorem 2.1.8 (Harten's Theorem). If a numerical scheme can be written in the

form

un



an exhaustive background in the �eld as many classical topics such as in-depth

discussion of the Riemann problem and the CFL condition have been omitted.

Readers wishing to learn more about hyperbolic conservation laws and the nu-

merical methods associated with them have plenty of resources to consider. Further



solution is locally. While ux and slope limiters arise from di�erent approaches

to solving the problems surrounding Godunov's order barrier theorem, they take a

similar mathematical form. More in-depth discussion of ux/slope limiters can be

found in [vL79], [Swe84] and [GL88].

Another type of high-resolution scheme which has been widely used comprises Es-

sentially Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory (WENO)

schemes. These schemes work by allowing the size of the computational stencil to

vary to control oscillations. Both types of scheme generate several candidate sten-

cils in an attempt to minimise oscillations, ENO taking the least oscillatory while

WENO takes a linear combination of the candidates. Further reading on these

schemes can be found in [HEOC87] and [Shu09].

2.1.5 Example Conservation Laws

In this section we briey introduce some conservation laws which will be used as

examples in the rest of the thesis.

Note that in this section we will denoteu(x; t ) by u for ease of reading.

Linear Advection Equation

The simplest conservation law that we consider is the Linear Advection Equation.

This equation models uid with a constant ow and is given in di�erential form by

ut + aux = 0; (2.32)

wherea is the constant uid velocity.
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Inviscid Burgers' Equation has many known exact solutions making it a useful test

case for numerical methods. Importantly, piecewise linear initial data and boundary

conditions are easily incorporated via the method of characteristics. Furthermore, a

smooth solution for a sine wave initial condition up to shock formation time is given

in [GMP15].

Buckley-Leverett Equation

The �nal conservation law that we consider is the Buckley-Leverett Equation.

The equation arises in two phase ow in porous media and is commonly used as a

benchmark problem by the oil industry to model oil recovery via water-drive in 1D

horizontal ow [VDPP07]. In this oil recovery example the solutionu represents the

saturation of water and therefore must lie between 0 and 1.

The ux function for the Buckley-Leverett Equation is given by

f



2.2 R-Re�nement Methods

In the previous Sections we discussed hyperbolic conservation laws and some of the

numerical methods used to attempt to solve them. One area that was not discussed

was the notion of adaptive computational meshes as a method for attempting to

solve them.

In this section we focus on relocation re�nement (r-re�nement) methods and give

a brief history of some of the di�erent ways in which they have been implemented.

Note that in this section we consider re�nement methods for general PDEs instead

of only focusing on conservation laws.

2.2.1 Motivation

The solutions of time dependent PDEs often have features which evolve signif-

icantly as time progresses. These feature include interfaces, shocks, singularities,

change of phase, high vorticity and regions of complexity [BHR09]. Examples of

such structures appear in a plethora of applications including uid dynamics, con-

servation laws, free boundary problems, combustion, meteorology and mathematical

biology. The evolution of these features often happens over short time scales in very

�ne regions of space and as such a computational mesh must be at least as �ne to

be able to capture this behaviour.

Using a uniform mesh to solve a problem with complex features is clearly not

advisable since in order to resolve the �ne grain features a small mesh spacing,

� x, is required but this is computationally ine�cient away from such structures.

Instead adaptive methods are applied which attempt to re�ne/coarsen the mesh as
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required. These adaptive methods generally fall into three categories, h-re�nement,

p-re�nement and r-re�nement.

The h-re�nement methods are the most commonly applied type of adaptive mesh

and is named after the widespread use of the notationh = � x. Such methods usually

start with a uniform mesh and locally coarsen or re�ne the mesh by removing or

adding in mesh points, respectively. This is often achieved by considering some a

posteriori estimate of the solution error and setting tolerances to indicate where

nodes should be introduced or removed.

The p-re�nement methods are only applicable to �nite element methods (FEM)

and stands for polynomial re�nement. In p-re�nement methods a �nite element

discretisation of the PDE is applied with local polynomials of some particular order.

This order is then increased/decreased with regard to some a posteriori solution

error. It is possible to combine h-re�nement and p-re�nement methods to generate

hp-re�nement methods which are explored in [AO97].

In r-re�nement (relocation re�nement) methods the computational mesh is al-

lowed to move in the hope that the mesh re�nement/coarsening will occur automat-

ically without the need to add or remove computational nodes. The mesh movement

is often dictated by some function of the solution in the hope that this will cause the

computational nodes to gather in regions where a small spatial step is required and

separate in regions where the solution is changing very little. These methods are

not as widely used as either h-re�nement or p-re�nement methods but have been

successfully applied to a variety of di�erent applications including computational

uid mechanics [Tan05], convective heat transfer [CH01] and mathematical biology

[LBLT13].
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The main downside of r-re�nement methods is that allowing the mesh to move

introduces some problems which static meshes do not have namely, the mesh can

tangle. Mesh tangling can occur in multiple ways but the main two are node crossing,

where one computational node passes another, and mesh vorticity, where the mesh

starts to spiral in on itself causing the connectivity of the mesh and the location

of the nodes to be incompatible. Node crossing is often caused by a poor choice of

time step while mesh vorticity is often caused by vorticity is the solution making it

di�cult to avoid.

The methods that will be studied in this thesis are r-re�nement methods and as

such this section will give a brief overview of other moving mesh schemes.

2.2.2 Useful Tools

In this section we introduce a few mathematical tools which are commonly used

in r-re�nement methods.

The �rst of these is the notion of a monitor function. As noted in the previous

section, r-re�nement methods often require some function of the solution to guide

the mesh evolution. A monitor function,m(u; ux ; uxx ; :::), is commonly used as part

of the mesh evolution.

Some examples of monitor functions are the density monitor

m(u) = u (2.37)

and the arc length monitor

m(ux ) =
p

1 + ( ux )2: (2.38)
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Another important mathematical tool is the notion of an equidistribution prin-

ciple. This is applied to a general monitor function and is important for many

established results in moving mesh methods.

De�nition 2.2.1 (Equidistribution Principle) . [dB73] The equidistribution princi-

ple states that for 06 � 6 1,

Z x̂ (�;t )

a(t )
m(u; ux ; uxx ; :::)dx = �

Z b(t )

a(t )
m(u; ux ; uxx ; :::)dx (2.39)

wherea(t) is the left hand boundary of the domain,b(t







In this section we detail how these methods arise, give an example of a particular

method applied to a test problem and note further reading which may be of interest.

2.3.1 Derivation

The �rst step in solving a problem using these conservation methods is to �rst

rewrite the PDE in the Lagrangian formulation. Start by choosing a monitor func-

tion, m(u; ux ; uxx ; :::), and consider the associated monitor integral

M (u; ux ; uxx ; ::: : x̂1(t); x̂2(t)) =
Z x̂2 (t )

x̂1 (t )
m(u; ux ; uxx ; :::)dx; (2.40)

wherex̂1(t) and x̂2(t) are moving coordinates. The moving coordinates are de�ned

to be such that the monitor integral remains constant in time hence,

d
dt

Z x̂2 (t )

x̂1 (t )
m(u; ux ; uxx ; :::)dx = 0: (2.41)

Since x̂1(t) and x̂2 are only de�ned to move so that equation (2.41) holds only

their velocity is prescribed. This implies that such coordinates can be arbitrary in

the sense of initial starting position and hence, the region being considered could be

the entire domain or an arbitrary time dependent subregion.

Leibniz integral rule [Fla73] can be applied to the left hand side of equation (2.41)

in order to take the time derivative inside the integral,

Z x̂2 (t )

x̂1 (t )
mtdx + [ mx̂(t)t ]

x̂2 (t )
x̂1 (t )
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Depending on the form of the monitor function either the Eulerian PDE (2.1)

or the balance law (2.5) can be used to replace themt term in the integrand of

equation (2.42). This is not trivial to do for a general monitor function but for a

given monitor function equation (2.42) can be rewritten into a formula for ^x(t)t .

It is noted that the manipulation of equation (2.42), required to �nd the cor-

rect conservative velocity, includes having to divide bym(u; ux ; uxx ; :::) and for this

reason the monitor function should be non-zero.

Together the conservation of the monitor integral (2.40) and the conserving ve-

locity x̂(t)t form the Lagrangian formulation. To derive a speci�c scheme these two

equations are then discretised.

Remark 2.3.1. Note that while the above discussion assumes that the mon-

itor is conserved over the domain it is also possible to apply the method to

problems in which the monitor function is not conserved. This is achieved by

considering the monitor integral over a subregion relative to the monitor inte-

gral over the entire domain. In this way a subregion can be seen to conserve a

fraction of the total monitor integral. This method is covered in [LBL15] for

the density monitor function.

2.3.2 An Example

In the previous section we briey discussed how to derive the Lagrangian formula-

tion of a general monitor function. Since the conserving velocity is di�cult to write

down explicitly without making assumptions on the monitor integral we consider an

example problem.
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Consider the Porous Medium Equation given by

u(x; t )t = ( u(x; t )u(x; t )x )x (2.43)

with appropriate initial conditions and boundary conditions [Aro].

Since mass is conserved for the PDE (2.43) we will consider the density monitor

m(u) = u; (2.44)

which leads to the the conservation of mass

d
dt

Z x̂2 (t )

x̂1 (t )
udx = 0: (2.45)

Applying Leibniz integral rule to equation (2.45) gives

Z x̂2 (t )

x̂1 (t )
utdx + [ ux̂ t ]

x̂2 (t )
x̂1 (t ) = 0 (2.46)

and using the PDE (2.43) yields

Z x̂2 (t )

x̂1 (t )
(uux )xdx + [ ux̂ t ]

x̂2 (t )
x̂1 (t ) = 0: (2.47)

Finally applying the fundamental theorem of calculus [CJ12] leads to

[uux + ux̂ t ]
x̂2 (t )
x̂1 (t ) = 0; (2.48)

which has a solution if

x̂ t = � ux : (2.49)
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Together the mass conservation (2.45) and the conservative velocity (2.49) form

the mass conservative Lagrangian formulation for the porous medium equation

(2.43), then all that remains is to discretise both of these equations.

Approximating the conservation of mass (2.45) by the trapezium rule yields

A j � 1=2 =
1
2

(x̂n
j � x̂n

j � 1)(un
j + un

j � 1); (2.50)

whereA j � 1=2 is the local mass constant.

Using a discretisation of the velocity (2.49) and inserting it into the Forward Euler

methods gives

x̂n+1
j = x̂n

j � � t
un

j � un
j � 1

x̂n
j � x̂n

j � 1
: (2.51)

In order to test the scheme we consider the initial condition,

u(x; 0) =

8
<

:
(1 � x2)

1
2 jxj 6 1

0 otherwise
; (2.52)

with far �eld boundary conditions.

Note that by `far �eld' boundary conditions we mean that the boundaries are far

away from the behaviour we are interested in and the solution is essentially constant

near these boundaries.

Figure 2.7 shows the results of the moving mesh scheme and the results from the

Eulerian Crank-Nicolson scheme [CN47] when run with the same number of nodes

and the same timestep for comparison.
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Chapter 3

Mass Conserving Moving Mesh

Methods for Conservation Laws

In this section we set out the general class of schemes that we consider in this

thesis. This is done by demonstrating how to derive the mass based Lagrangian

formulation for a general conservation law and providing a generalised numerical

approximation to the resulting equations.

Recall from section 2.1 that the scalar hyperbolic conservation law with solution

u(x; t ) is given by

ut + f (u)x = 0; x 2 (a(t); b(t)) ; t 2 R+ ; (3.1)

u(x; 0) = u0(x); x 2 (a(0); b(0)); (3.2)

u(a; t) = ua(t); t 2 R+ : (3.3)

We assume thata(t) is the inow boundary, as de�ned in section 2.1, leading to

a boundary condition only being required here. This assumption does not lead to a

loss of generality and the results of this section follow similarly under the assumption
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that b(t) is the inow boundary.

3.1 Lagrangian Formulation

Following the same procedure as in Section 2.3 requires choosing a monitor func-

tion. Since a mass conserving scheme is desired an obvious choice of monitor function

is the density function,

m(u) = u(x; t ): (3.4)

As in section 2.3 this imposes a restriction on the problems that can be solved

with a conservation-based moving mesh method. Namely, only problems where

u(x; t ) > 0; 8x; t; (3.5)

may be considered.

The choice of monitor function (3.4) leads to the monitor integral

M (u; x̂1(t); x̂2(t)) =
Z x̂2 (t )

x̂1 (t )
u(x; t )dx; (3.6)

which is required to be constant in time for ^x1(t) and x̂2(t) moving with appropriate

velocity. Hence,

d
dt

Z x̂2 (t )

x̂1 (t )
u(x; t )dx = 0: (3.7)
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It follows that by applying Leibniz integral rule to dM
dt that,

d
dt

Z x̂2 (t )

x̂1 (t )
u(x; t )dx =

Z x̂2 (t )

x̂1 (t )
utdx + [ u(x; t )x̂ t ]

x̂2 (t )
x̂1 (t ) ; (3.8)

and appealing to the conservation law (3.1) further yields

d
dt

Z x̂2 (t )

x̂1 (t )
u(x; t )dx = �

Z x̂2 (t )

x̂1 (t )
f (u)xdx + [ u(x; t )x̂ t ]

x̂2 (t )
x̂1 (t ) : (3.9)

Application of the fundamental theorem of calculus gives

d
dt

Z x̂2 (t )

x̂1 (t )
u(x; t )dx = [ u(x; t )x̂ t � f (u)]x̂2 (t )

x̂1 (t ) : (3.10)

Note that equation (3.10) is a generalised balance law which we call the `La-

grangian balance law'. This balance law has a di�erent ux function associated

with it that we call the `net ux',

Net Flux = f (u) � ux̂ t : (3.11)

It is clear from equation (3.10) and the time independence requirement (3.7) that

[u(x; t )x̂ t � f (u)]x̂2 (t )
x̂1 (t ) = 0: (3.12)

Let x̂1 = a(t) be the position of the inow boundary and x̂2 = x̂; x̂ 2 (a(t); b(t))

be an arbitrary moving coordinate, with velocityx̂ t . It follows from equation (3.12)

that

ua(t) x̂ t ja � f (ua) = u(x̂; t )x̂ t � f (u): (3.13)
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time.

Since the inow boundary a(t) is �xed it is clear that x̂ t ja = 0 and hence the

velocity (3.16) simpli�es to become

x̂ t =
f (u) � f (ua)

u(x̂; t )
: (3.17)

Note further that the standard Eulerian problem formulation �xes both the inow

boundary,a(t), and the outow boundary, b(t). This de�nes a �xed `volume' and as a

consequence cannot guarantee global mass conservation for a given initial condition.

In the Lagrangian formulation global mass conservation is required and therefore

we cannot �x the `volume'. This implies that since the inow boundary,a(t), is the

only given boundary condition and �xed we must allowb(t) to remain free to move

as prescribed by the mass conservation. This is prescribed by

x̂ t jb =
f (ub) � f (ua)

ub(t)
: (3.18)

Therefore, in the Lagrangian formulation the net ux across all such coordinates

must be equal at any given time,t. This means that the net ux of the inow

boundary condition determines the net ux for every other ^x which moves with

a consistent mass conserving velocity. In the case of the �xed inow boundary,

equation (3.12) tells us that the net ux for any coordinate must be equivalent to

f (ua).

3.2.2 Boundary with Characteristic Velocity

The next case to consider is the special case where the inow boundary is pre-

scribed to move with the characteristic velocity. This means that the inow bound-
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ary follows the characteristic starting at the same point exactly.

Recall from section 2.1.2 that on characteristic lines the solutionu(x; t ) remains

constant and the characteristic velocity can be found by

x0(t) = f 0(u): (3.19)

Substituting the given boundary data into equation (3.19) yields

x̂



3.2.3 Free Lagrangian Boundary Conditions

The �nal boundary condition we consider is called the `free Lagrangian' boundary

condition. In this case the boundary condition is allowed to arise naturally from the

Lagrangian formulation of the problem through a zero net ux.

Recall equation (3.12),

[u(x; t )x̂ t � f (u)]x̂2 (t )
x̂1 (t ) = 0: (3.23)

This was previously used to �nd the correct velocity of an arbitrary coordinate

to give mass conservation between two such coordinates. This was done by setting

the net ux at each coordinate to be equivalent to the net ux at the given inow

boundary.

The `free Lagrangian' velocity is found by setting all net uxes, including at the

inow boundary, equal to 0. In this way the net ux sets the boundary condition,

in contrast with previous examples where the boundary condition set the net ux.

Since it is required that ua(t) x̂ t ja � f (ua) = 0, it follows directly from equation

(3.14) that the general coordinate velocity in this case is simply given by

x̂ t =
f (u)

u(x̂; t )
; (3.24)

where it is noted that there is no dependence on the inow boundary.
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Inserting our outow boundary into equation (3.24) gives the outow boundary

velocity to be

x̂ t jb =
f (ub)
ub(t)

: (3.25)

Note that for the rest of this thesis we will only consider `free Lagrangian' bound-

ary conditions. This does not lead to a loss of generality of any of the results

contained and there are several example problems with other boundary conditions

to demonstrate this.

3.2.4 Limits on the Boundary Velocity

Having given three examples of boundary conditions, the question remains as to

whether there are any limits on how the boundary conditions may be prescribed.

Section 2.1 discussed when and where boundary conditions should be applied to

standard Eulerian hyperbolic conservation laws, namely they should only be applied

to inow boundaries. To determine if a boundary is an inow or outow, consider

the expression

� n � f 0(u)j@
 (3.26)

where @
 is the point on the boundary you are considering andn is the normal

unit vector which leaves the domain. Note that in our 1D casen is simply � 1 if we

are considering the left hand boundary and 1 if we are considering the right hand

boundary.

The expression (3.26) can be used to determine if a boundary is inow or out-

ow by calculating whether it is positive or negative. If (3.26) is positive then the
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boundary is an inow and if (3.26) is negative then it is an outow.

Remark 3.2.1. If the expression (3.26) is equal to 0 then we are in the

special case where the boundary lies exactly on a characteristic line. In this

case the fact thatu(x; t ) must be constant along characteristics implies that

the boundary condition is determined by the initial condition. Further note

that this does not make the problem solely an IVP since the other boundary

could still be an inow boundary.

It is natural to ask if a similar function can be found for the Lagrangian formu-

lation of the problem, i.e. is it possible to �nd a function to replace f 0(u) which

changes sign for the two types of boundary?

We propose that a suitable function is

f 0(u) � x̂ t (3.27)

where x̂ t is the calculated boundary velocity. This leads to the Lagrangian in-

ow/outow expression being given by

� n � (f 0(u) � x̂ t )jx= a(t ) : (3.28)

This function follows naturally when considering the Eulerian �xed boundary case

sincef 0(u) informs us of the velocity of the characteristic trajectories and since the

boundary is not moving this is su�cient to determine whether the characteristic

lines are entering or leaving the domain. In the Lagrangian moving boundary case

however it is not su�cient and we therefore compare the chosen boundary velocity

with the characteristic velocity to determine which is moving faster.
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Figures 3.1 and 3.2 highlight the two cases where (3.27) is positive and negative

leading to an inow and an outow boundary respectively.

Figure 3.1: A moving domain in blue where the boundary velocity does not exceed
the characteristic velocity, hencef 0(u) � x̂ t > 0 and the left hand boundary is still
an inow boundary.

Figure 3.2: A moving domain in green where the boundary velocity exceeds the
characteristic velocity, hencef 0(u) � x̂ t < 0 and the left hand boundary is now an
outow boundary.

Note that as in remark 3.2.1 the case where (3.28) is equal to zero implies that

the boundary is moving along a characteristic line and is therefore neither an inow

nor an outow boundary. This is the characteristic velocity de�ned earlier in this

section.
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Remark 3.2.2.



In this section we consider two alternative options for each of these choices. Note

however that neither of these sections covers the options available exhaustively and

instead focuses on the more promising alternatives.

3.3.1 Standard Partition vs Overlapping Masses



The other clear option is to instead have overlapping intervals which all relate

back to the inow boundary. In this case the local mass conservation is given by

Z x̂ j (t )

x̂1 (t )
udx = A (j +1) =2; 8j 6 J; j 2 N; (3.31)

whereA (j +1) =2 is the mass constant andJ is the number of nodes in the partition.

Note that in this description the local mass constantAJ is the total mass over the

entire domain. Figure 3.4 illustrates this overlapping partition for completeness.

x

u

1st cell

2nd cell

3rd cell

x1 x2

Figure 3.4: The overlapping partition in which subinterval of the domain starts at
the inow boundary of the region.

Now that we have introduced the two main ways of partitioning the domain we

leave the choice of which to use until section 3.4 where the consequences of the

choice can be more clearly seen.

3.3.2 Choice of Local Mass Constant

The second choice that must be made in regards to partitioning the domain is

how to choose the length of the subintervals.
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The obvious choice here is to start with a uniform length of intervals. Explicitly,



3.4 Discretising the Lagrangian Formulation

In this section we focus on how to discretise the Lagrangian formulation. Unlike

the approximation of the Eulerian formulation of the problem which only requires the

PDE to be discretised, the Lagrangian formulation requires that the two equations

(3.15), (3.16) are discretised. These are the local conservation and the partition or

mesh velocity.

3.4.1 Mesh Movement

The key idea of the Lagrangian moving mesh method is that the domain is par-

titioned and the boundaries move such that the local mass in the partitions is con-

served. This may be discretised by considering these boundaries as nodes on a

computational mesh, leading to a numerical approximation in which the local mass

is conserved in each cell.

To compute the mesh movement the conservative velocity (3.16) must be discre-

tised. To approximate this we have choose a general Runge-Kutta approximation

x̂n+1
j = x̂n

j + � t
sX

i =1

bi ki (3.35)

where ki = x̂(x̂n
j + � t

P s
l=1 ail kl ; tn + ci � t)t and ail , bi and ci are the coe�cients



form of quadrature approximation is given by

Z xq

xp

u(x)dx



to work with. Since we are only considering intervals with solutions known at the

nodes we simplify the general quadrature (3.36) to

Z x j � 1

x j

u(x)dx � (x j � x j � 1)(dj u(x j ) + dj � 1u(x j � 1)) ; (3.37)

wheredi are weights such thatdj + dj � 1 = 1.

3.5 A General Mass Conservative Moving Mesh

Method

In this section we put everything we have developed in the previous section to-

gether and �nally arrive at a general moving mesh method for solving a general

conservation law.

In the rest of the general discussion in this thesis we will assume that we are

required to �nd a strictly positive numerical solution to the following scalar Eulerian

conservation law,

ut + f (u)x = 0; x 2 (a; b); t 2 R+ ; (3.38)

u(x; 0) = u0(x); x 2 (a; b); (3.39)

u(a; t) = �; t 2 R+ ; (3.40)

where� > 0 is a constant andu(x; t ) > 0.

Following the steps demonstrated in section 3.1 it can be easily shown that the

resulting Lagrangian formulation to this Eulerian conservation law (3.38) is given
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by a mass conservation equation,

d
dt

Z b̂(t )

â(t )
udx = 0; (3.41)

together with a velocity which de�nes the motion of the nodes to enforce conservation

of mass,

x̂ t =
f (u) � !

u
; (3.42)

where!



move.

Remark 3.5.1. It is noted that allowing one of the boundaries to move when

the problem speci�es a �xed domain may cause alarm for readers who are

used to solving such problems using Eulerian methods. An example that may

arise is what happens if the PDE (3.38) does not hold beyondb, while the

Lagrangian solution allowŝb(t) > b for somet?

This issue can be alleviated to some degree by considering that real world

problems that lead to constraints on the physical domain rely on systems

of conservation laws as opposed to a single scalar conservation law. Indeed a

scalar conservation law is often not suited to having interfaces where behaviour

changes, for example a wall or a change in material, and should instead be con-

sidered as a restriction of an in�nite domain problem where we have truncated

the domain for computational purposes rather than physical restraints. In sec-

tion 6 this is supported by considering a problem of a �xed physical domain

and showing that the Lagrangian formulation allows the same �xed domain.

Having demonstrated that the outow boundary can move, now consider if the

inow boundary is actually restricted to being stationary. Indeed the restriction

(3.40) on the boundary condition being constant implies thatu(x; t ) is constant in

any region where the characteristics trace back to the boundary condition. Hence

we could choose to apply any boundary that starts ata and has a velocity such that

â(t) 6 f 0(� )t + a; 8t: (3.43)

56



This is because any characteristic line which starts at the boundary carries the

same constant value ofu. It follows that we may choose any path for the moving

boundary to follow in this region without change the boundary condition of the

solution.

As long as the prescribed boundary velocity satis�es the condition (3.43) then this

boundary will always lie within the region whereu(x; t ) = � and this is therefore

the solution boundary condition which applies for such boundaries.

Assume for ease of notation that the `free Lagrangian' boundary condition (3.24)

satis�es the condition (3.43), i.e. f (� ) 6 �f 0(� ). In this case we can simplify

the Lagrangian formulation since the net ux is zero. Under this assumption the

complete Lagrangian formulation can be written as a local conservation of mass

d
dt

Z x̂2 (t )

x̂1 (t )
udx = 0; (3.44)

giving a simpli�ed velocity which de�nes the motion of the subinterval boundaries

to allow for this conservation,

x̂ t =
f (u)

u
; (3.45)

with the initial condition

u(x; 0) = u0(x); x 2 (â(0); b̂(0)); (3.46)

and, the boundary conditions

ât =
f (� )

�
and u(â(t); t) = �: (3.47)
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Note that x̂1(t) and x̂2(t) are arbitrary coordinates in the interval (â(t); b̂(t)) that

move with the mass conserving velocity (3.45).

The discussion in section 3.4 provides the �nal step required to derive the general

mass conservative moving mesh method to solve the original conservation law (3.38)-

(3.40), namely the discretization of equations (3.44) and (3.45).

Using the quadrature approximation (3.37) to equation (3.44) and a general

Runge-Kutta scheme for the mesh motion leads to the general moving mesh scheme

x̂n+1
j = x̂n

j + � t
sX

i =1

bi ki (3.48)

and

(x̂n+1
j � x̂n+1

j � 1 )(dj un+1
j + dj � 1un+1

j � 1 ) = A j � 1=2; (3.49)

whereki = x̂ t (x̂n
j + � t

P s
l=1 ail kl ;1819 7.9701 Tf 6.5J/F15 11TJ/F21 11.955s;1819 7.9701 Tf[8odfs643(conserv)54(ax7857 u11.046.001.9552 Tfc 11.955d [(b)]TJ/F22 7.9701 Tf 4.977 -1.793 Td [(i)]TJ/F21 t62(()t2.7,)]TJ/F21 11.9552 T301 Th5/F21 11.9552 Tf 4.553 0 Td [(t)]TJ/F15 11.9552 T314-395.2811 and ^a i



4. On the new mesh use the general quadrature (3.49) to recover the new solution

values,un+1
j , on the nodes.

5. Repeat steps 3 and 4 until the desired termination time is reached.

3.6 Examples

In this section we demonstrate how the framework developed in this section can

be applied to the example conservation laws introduced in section 2.1.5.

In the �rst example we look at the derivation of the scheme step by step to

demonstrate how such a scheme can be constructed from scratch, while in the other

two examples we use the general forms found earlier in the chapter as shortcuts to

deriving the scheme.

3.6.1 Linear Advection Equation

As noted in section 2.1.5 the simplest scalar conservation law is the linear advec-

tion equation wheref (u) = au with a constant. This leads to the linear conservation

law

ut + aux = 0; (3.50)

with a given initial condition u0(x) and a free Lagrangian boundary condition.

As the scheme is desired to be mass conserving, the rate of change of the mass in

a moving interval over time should be zero, hence

d
dt

Z x̂2 (t )

x̂1 (t )
udx = 0: (3.51)
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Applying Leibniz integral rule to equation (3.51) gives

Z x̂2 (t )

x̂1 (t )
utdx + [ ux̂ t ]

x̂2 (t )
x̂1 (t ) = 0; (3.52)

and appealing to the conservation law (3.50) yields

�
Z x̂2 (t )

x̂1 (t )
auxdx + [ ux̂ t ]

x̂2 (t )
x̂1 (t ) = 0: (3.53)

The fundamental theorem of calculus can be used to show that

[ux̂ t � au]x̂2 (t )
x̂1 (t ) = 0: (3.54)

Under the given boundary condition we know thatux̂ t � au = 0 when evaluated

at the inow boundary. Hence, it follows that the mass conservative velocity for an

arbitrary moving coordinate is given by

x̂ t = a: (3.55)

Having chosen mass conservation and found the associated conservative veloc-



To approximate the mesh velocity (3.55) we choose to use the forward Euler

explicit method, yielding

x̂n+1
j = x̂n

j + a� t: (3.57)

Together equations (3.56) and (3.57) form the mass conservative moving mesh

method for solving the linear advection equation (3.50). The scheme is applied by

using equation (3.57) to update the mesh and then using the quadrature (3.56) to

recover the solution at each timestep.

Remark 3.6.1. Note that the linear advection equation (3.50) is a special

case for our class of numerical schemes. This is due to the fact thatf (u)

is linear and as a result ^x t = f (u)
u is a constant for all nodes in the mesh.

Considering the numerical method (3.56)-(3.57) derived, it is clear that since

the nodesx̂ j and x̂ j � 1 have the same velocity for all time, the quadrature is

not actually required as the solution value,un
j , remains constant. As a result

the scheme is easily veri�able as exact in time with the only error occurring

in the original discretisation of the initial condition.

To demonstrate the scheme we consider a single wave withu constant everywhere

else. The test problem is given by de�ning the constant

a = 1; (3.58)

the initial condition

u0(x) =

8
<

:
(x2 � 1)2 + 0:5 � 1 6 x 6 1

0:5 otherwise
; (3.59)
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the inow boundary trajectory

x̂0(t) = t � 2; (3.60)

and an initial domain, [� 2; 2].

Note that we are not required to prescribe a solution boundary condition as for

the linear advection equation the `free Lagrangian' boundary condition coincides

with the characteristic boundary condition sincef 0(u) = f (u)



It is clear from Figure 3.5 that the notes made in remark 3.6.1 hold since the

solution does not di�use or blow up. The numerical solution moves with the speed

expected and the only error is incurred in the discretisation of the initial condition.

3.6.2 Inviscid Burgers' Equation

The simplest nonlinear conservation law is the Inviscid Burgers' equation. In this

equation f (u) = 1
2u2 leading to the PDE



where A is a single constant for all cells due to equidistribution. To approximate

the mesh movement (3.63) we again use the explicit forward Euler method, yielding

x̂n+1
j = x̂n

j +
� t
2

un
j : (3.65)

As a test problem for this numerical scheme we give the piecewise linear initial

condition

u0(x) =

8
>>><

>>>:

1:1 + x � 1 < x 6 0

1:1 � x 0 < x < 1

0:1 otherwise

; (3.66)

the inow boundary condition

u(x̂0(t); t) = 0 :1; (3.67)

the inow boundary velocity

dx̂0(t)
dt

=
1
2

u(x̂0(t); t) = 0 :05 (3.68)

with the initial domain, [ � 2; 2].

As noted in section 2.1.5, since the initial and boundary conditions are piecewise

linear an exact solution for this problem can be calculated via the method of char-



time t = 1. The pre-shock solution fort < 1 is then given as

u(x; t ) =

8
>>>><

>>>>:

x + 1:1
t + 1

0:1t � 1 < x 6 1:1t
x � 1:1
t � 1

1:1t < x < 0:1t + 1

0:1 otherwise

; (3.69)

and the post-shock solution fort > 1 is

u(x; t ) =

8
<

:

x + 1:1
t + 1

0:1t � 1 < x 6 0:1t +
p

2t + 2 � 1

0:1 otherwise
: (3.70)

The numerical method (3.64)-(3.65) is run with 41 computational nodes over the

initial domain [� 2; 2] with a timestep of � t = 0:05. Figure 3.6A shows the solution

at time t = 0:9 before a shock has formed and Figure 3.6B shows the solution at

time t = 1:5 after the shock has formed and propagated.

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.6: These graphs show the comparison between the numerical solution (Blue)
to Inviscid Burgers Equation obtained from the scheme (3.64)-(3.65) and the exact
solution (Red). Comparisons are taken at the pre-shock time regimet = 0:9 (A)
and the post shock time regimet = 1:5 (B).
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Figure 3.6A shows that unlike the linear example the Inviscid Burgers' scheme is

prone to numerical di�usion. The interesting result is the post shock time regime

in Figure 3.6B, where the numerical scheme is correctly approximating the shock

speed.

3.6.3 Buckley-Leverett Equation

The �nal conservation law we consider from Section 2.1.5 is the Buckley-Leverett

equation. This equation is given by

ut + f (u)x = 0; (3.71)

with a given initial condition u0(x) and a free Lagrangian boundary condition, where

f (u) =

8
>>>><

>>>>:

u2

u2 + M (1 � u)2
0 6 u 6 1

0 u < 0

1 u > 1

; (3.72)

and M > 0 is a given constant.

Using the general Lagrangian velocity formula for free Lagrangian boundary con-

ditions (3.45) gives

x̂ t =
f (u)

u
=

8
><

>:

u
u2 + M (1 � u)2

0 < u 6 1

1
u u > 1

; (3.73)

where we note that theu 6 0 cases have been omitted since these problems do

not fall into the class of problem solvable by the conservation based moving mesh

method.

66



We use the same approximations to the local conservation (3.44) and the mesh

movement (3.73) as in the previous two examples, these are a one-sided quadrature

and the explicit forward Euler method, respectively.

We test the scheme with 41 computational nodes and a timestep of �t = 0:0001

over the region [� 2;





Chapter 4

Analysis of Mass Conserving

Moving Mesh Methods

In the previous chapter we demonstrated how to derive a mass conservative moving

mesh scheme for a given conservation law. As noted in Section 2.3, this class of

methods has been widely applied to nonlinear di�usion problems to yield e�ective

numerical results, for example in [BHJ11]. However, analysis of the schemes is often

omitted since special issues arise when considering the moving mesh for which the

schemes are nonlinear.

In this chapter we will discuss the main issues that arise when considering moving

mesh methods as opposed to standard Eulerian �xed mesh methods before introduc-

ing a transformation to a �xed reference space in which the analysis of the schemes

is feasible. Finally we will use this new space to show how the accuracy, stability

and convergence of such schemes can be obtained.
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exact, andu(x̂(� j ; tn ); tn ) is the exact solution at that point.

The true error can be broken into two component errors, namely the error in the

solution, un
j , and the error in the position, x̂n

j . This decomposition of the error is

shown graphically in Figure 4.1.

Figure 4.1: The True Error in the scheme broken down into solution error,Un



Both the standard error and the true error are useful for di�erent purposes and

it is therefore important that a connection is made between the errors. Figure 4.2

demonstrates an example of(i) a single node and(ii) the two points on the exact

solution which are used to de�ne the two global errors.



(4.3) gives

q �
Un

j

� 2
+

�
X n

j

� 2
! 0; (4.7)

which implies that both component errors must also be approaching 0. Hence as

the true error tends to 0,

Un
j ! 0 and X n

j ! 0: (4.8)

If we now consider the de�nition of the standard error (4.2) we may apply the

inequality,

ju(x̂n
j ; tn ) � un

j j 6 ju(x̂n
j ; tn ) � u(x̂(� j ; tn ); tn )j + ju(x̂(� j ; tn ); tn ) � un

j j; (4.9)

and by using the de�nition of the solution error (4.4) we can simplify (4.9) to yield

ju(x̂n
j ; tn ) � un

j j 6 ju(x̂n
j ; tn ) � u(x̂(� j ; tn ); tn )j + Un

j : (4.10)

It follows from the de�nition of the position error (4.5) that as X n
j ! 0

jx̂(� j ; tn ) � x̂n
j j ! 0; (4.11)

and furthermore due to the assumption that the exact solution is continuous at

x̂(� j ; tn ) it follows from the Mean Value Theorem that

ju(x̂n
j ; tn ) � u(x̂(� j ; tn ); tn )j =

�
�
�
�
@u
@x

�
�
�
�
�

�
�
�
�
�
� x̂(� j ; tn ) � x̂n

j

�
� ! 0; (4.12)

where� is a position between ^x(� j ; tn ) and x̂n
j .
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Combining equations (4.8), (4.10) and (4.12) yields the required result.

Theorem 4.1.1 shows that at all points besides discontinuities in the solution,

convergence of the true error implies convergence of the standard error. Hence for

the rest of this chapter we concern ourselves only with the true error of the numerical

scheme.

4.2 Transformation to a Reference Space

In this section we introduce a useful tool for analysing our moving mesh schemes.

The idea is to transform both the conservation law and the corresponding numerical

scheme into a space in which the scheme is applied over a �xed grid. This allows

the use of well developed methods of �nding accuracy, stability and convergence.

The transformation used is based on a mapping given in [BHR96]. However, in

that paper the authors use the transformation as an actual tool for numerically

solving problems whereas here it is simply used as an analytical tool to obtain a

reference space.

We call the space in which our problem is posed `physical space' and the space

into which we transform the `reference space'.

The reference space is de�ned by the following properties:

1. Any point x̂ moving with the required velocity for conservation of the monitor

function in physical space is stationary in the reference space.

2. The physical domain of our scheme maps to [0; 1] in the reference space.
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We now note that since ^x � = f (u)
u under local mass conservation from (3.45),

equation (4.15) becomes

~u� +
~uf (~u)� � f (~u)~u�

~ux̂ �
= 0

) ~u� +
~u
x̂ �

�
f (~u)

~u

�

�

= 0:



We note that (4.20) is not a classical conservation law due to the factoru
2

K �
. How-

ever, in order to exploit the equation it would be bene�cial if we could reformulate

it as a classical conservation law, as follows.

The �rst step in reformulating equation (4.20) is to rewrite the equation such

that the dependent variable ~u does not appear outside of the derivative in the

second term. This can be achieved by making certain polynomial assumptions on

f . However, for generalf we can de�ne a new dependent variablew = 1
~u .

Using this new variable the transformed PDE (4.20) becomes

�
1
w

�

�

+
1

w2K �

�
wf

�
1
w

��

�

= 0

) w� �
1

K �

�
wf

�
1
w

��

�

= 0: (4.21)

All that remains in order for the transformed PDE to be a classical conservation

law is to show that K � is a constant in space. In order to show this we begin by

noting that we have made no assumptions on� other than that it is time independent

and recall the equidistribution principle from Section 2.2.2.

De�nition 4.2.1 (Equidistribution Principle) . The equidistribution principle states

that for 0 6 � 6 1

Z x̂ (�;t )

x̂0

udx = �
Z x̂F

x̂0

udx: (4.22)

Note here that the LHS of the de�nition (4.22) de�nes a proportion of the integral

over the whole region (^x0; x̂F ) in physical space which has a constant value due to

our requirement of mass conservation.
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If we let the reference space coordinate� be � as de�ned by the equidistribution

principle and transform equation (4.22) to the �xed reference space then

Z �

� 0

x̂ �



Using the local conservation principle (3.64) to eliminate the ^x terms gives

c
un+1

j

�
c

un
j

= � t
�

f n
j

un
j

�
f n

j � 1

un
j � 1

�
; (4.28)

wherec is the local mass constant.



at the start of this chapter.

4.3.1 Comparing the Standard Error and the True Error

At the beginning of this chapter we briey discussed the issues with calculating the

error for our conservation based moving mesh schemes. Importantly, the actual error

that should be decreasing is not very useful for end users of the scheme. Theorem

4.1.1 shows that the true error (4.3) and the standard error (4.2) converge to zero

together away from shocks, however this is insu�cient for considering the order of

each scheme.

As shown in the proof of Theorem 4.1.1 both the standard and the true error may

be written in terms of the component errors

Sn
j = u(x̂(� j ; tn ); tn ) � un

j and X n
j = x̂(� j ; tn ) � x̂n

j : (4.30)

The true error is given by

Tn
j =

q



and

X n
j = O(� x l ) + O(� tn ) (4.34)

for somek; l; m and n.

It follows from inserting equations (4.33) and (4.34) into equation (4.31) that the

true error is then

Tn
j =

p
(O(� xk) + O(� tm ))2 + ( O(� x l ) + O(� tn ))2



As a result of the equation (4.36) and the inequality (4.38) we can now �nd the

order of the true error and the worst case scenario order for the standard error if we

know the orders of the solution errorUn
j and the position errorX n

j .

4.3.2 Finding the Solution and Position Errors

Having reduced the question of accuracy down to having to �nd the order of both

the solution error Un
j and the position error X n

j we now use the reference space

transform from Section 4.2 to �nd these orders.

It is noted that in the reference space the mesh is static and hence there is no

position error in the reference space. As a result there is only a single error in the

reference space which is related to the solution error by

Un
j =

1
w(� j ; � n )wn

j
(w(� j ; � n ) � wn

j ): (4.39)

Since the reference space PDE is known and the transformed numerical scheme is

on a static mesh the order of the transformed numerical scheme is easily calculated.

Assuming that the reference space scheme ispth order in space andqth order in time

gives the solution error as

Un
j = O(� � p) + O(� � q); (4.40)

which can be changed to physical space parameters to give

Un
j = O(� Ap) + O(� tq); (4.41)

whereA is the local mass constant.
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Note that unlike static mesh methods the spatial order is given in terms of the

local mass constantA instead of the spatial step �x. This is due to the fact that

the scheme replaces the notion of �xed `volumes' with �xed masses and hence the

quantity � x is not useful since we cannot say what size it has in general. This is still

consistent with regular de�nitions of order since both a reduction in spatial step �x

for Eulerian methods and a reduction in the local mass constantA in our scheme

are results of increasing the number of nodes in the mesh.

Now all that remains is to �nd the position error. Recall from Section 4.2 that

x̂ � = K � w; (4.42)

whereK � is a constant as de�ned in equation (4.19).

Since equation (4.42) shows that ^x � and w are related by a constant this implies

that the errors in both are accurate to the same order. Hence under the same

assumption made on the order of the reference space scheme before it follows that

the numerical approximation ofx̂ � is accurate to thepth order in space and theqth

order in time.

We now need to �nd the order of the error in x̂ from the error in x̂ � . It is

an established result that if an approximation isnth order then the error in the

derivative is n � 1th order. This holds only over a single interval however and

summing over a number of intervals inversely proportional to the spatial step reduces

the order by one. Hence, it follows that the order does not change since these two

e�ects cancel out and thus

X n
j = O(� Ap) + O(� tq): (4.43)
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Combining the component errors (4.41) and (4.43) with the results (4.36) and

(4.38) show that

Tn
j = O(� xp) + O(� tq); (4.44)

and

Sn
j 6 O(� xp) + O(� tq): (4.45)

In conclusion the error in the moving mesh Lagrangian scheme is of equal order

in both space and time to the transformed reference space PDE.

4.4 Stability

In this section we consider a stability framework for the schemes derived using

the Lagrangian formulation of the problem.

We start by considering the non-crossing criterion which prevents mesh tangling

in physical space before moving on to using the transform given in Section 4.2 to

�nd a true stability condition.

4.4.1 Non-crossing Criterion

As mentioned at the start of this chapter, a large issue that arises concerning

moving mesh methods is mesh tangling. Mesh tangling occurs when the order of

the nodes changes due to a poor discretisation of the problem. In this section we

will demonstrate a general non-crossing criterion and show how this is necessary but

not su�cient for stability of the solution.
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Start by assuming that at the nth timestep the computational mesh is untangled.

Then consider that for nodesj and j � 1 to remain ordered after a further time step,

the inequality

x̂n+1
j > x̂n+1

j � 1 : (4.46)

must hold for non-tangling.

Using a general timestepping scheme (3.48), where we simplify the velocity term

to vn
j for ease of reading, yields the inequality

x̂n
j + � tvn+1 =2

j > x̂n
j � 1 + � tvn+1 =2

j � 1 (4.47)

where vn+1 =2
j is a general approximation of thej th node velocity and may be fully

explicit, fully implicit or a combination of both.

The inequality (4.47) may be rearranged to �nd the restriction on � t to ensure

that (4.46) holds. This restriction is given by

� t <
x̂n

j � x̂n
j � 1

vn+1 =2
j � 1 � vn+1 =2

j

; (4.48)

sincevn+1 =2
j � 1 > v n+1 =2

j for crossing to occur and hencevn+1 =2
j � 1 � vn+1 =2

j is positive.

Note that the inequality (4.48) only accounts for the possibility that thej � 1th

node will cross thej th node during this particular timestep. Hence this leads to the

requirement that the timestep for nodesj and j � 1 between timestepsn and n + 1
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is given by

� tn+1 =2
j � 1=2 6

x̂n
j � x̂n

j � 1

vn+1 =2
j � 1 � vn+1 =2

j

if vn+1 =2
j � 1 > v n+1 =2

j ; (4.49)

and no requirement otherwise.

De�nition (4.49) allows � tn+1 =2 to be calculated for the entire mesh. Explicitly

this is

� tn+1 =2 = min
j

� tn+1 =2
j � 1=2 : (4.50)

The timestep de�nition (4.50) ensures that mesh tangling will not occur, however

this does not imply stability of the scheme and is generally not a practical condition

to apply.

The problem with this de�nition of the timestep is that we cannot guarantee

that the timestep will not approach zero, stopping the method from proceeding

further. To demonstrate this consider a problem in which the coordinate ^x j remains

stationary and the coordinatex̂ j � 1 is moving towardsx̂ j with a constant speed. In

this case the local timestepping restriction can be calculated to give

� tn+1 =2
j � 1=2 <

x̂n
j � x̂n

j � 1

vn+1 =2
j � 1

: (4.51)

The inequality (4.51) shows that since ^xn
j and vn+1 =2

j � 1 are constant andx̂n
j � 1 is

approachingx̂n
j the timestep must go to zero. This exact situation can occur around

a shock in a solution and is therefore a very real problem.

The second problem with using (4.50) as the adaptive timestep choice is that this



approximation to the local mass conservation (3.44),

un
j

�
x̂n

j � x̂n
j � 1

�
= A j � 1=2; (4.52)

whereA j � 1=2 is the local mass constant.

The choice of adaptive timestep (4.50) ensures that ^xn
j � x̂n

j � 1 > 0, however it places

no limit on how small this can become. It follows directly from the quadrature choice

(4.52) that sincex̂n
j � x̂n

j � 1 can become arbitrarily small thenun
j can grow arbitrarily

large.

The fact that the non-crossing criterion does not ensure stability of the solution,

u



Total Variation Diminishing

Since we have been able to transform both the PDE and the numerical scheme to a

space with a �xed spatial coordinate, we may now appeal to well established results

for the stability of �xed grid schemes. In particular, since we have a conservation

law and a scheme in conservative form, we consider TVD stability analysis [Har83].

We recall from section 2.1.3 that a scheme may be shown to be TVD by applying

Harten's Theorem.

Theorem 4.4.1 (Harten's Theorem). If a scheme can be written in the form

wn+1
j = wn

j � Cj � 1=2(wn
j � wn

j � 1) + D j +1 =2(wn
j +1 w+1



In order to show this we �rst show that by choosing our timestep in such a way that

our scheme meets the criteria for Harten's theorem, the transform does not a�ect

the order of nodes (i.e. there is no mesh tangling). Secondly, having shown this, we

consider whether the change of variables fromu to w leads to the introduction of

new extrema or an increase in the current extrema.

In this section we consider the general mass conserving moving mesh numerical

scheme (3.48)-(3.49) since all of the results hold of any such scheme.

Lemma 4.4.2. If a moving mesh numerical scheme of the form (3.48)-(3.49) has a

corresponding transformed scheme (4.29) that has been shown to be TVD for� t 6 T,

then

x̂n+1
j < x̂n+1

j +1 8j: (4.54)

Proof. Assume that the timestep has met the criteria that � t 6 T and that in

the moving mesh numerical scheme (3.48)-(3.49) there is at least oneJ such that

x̂n+1
J > x̂n+1

J +1 (i.e. the mesh has tangled).

Since the transformed numerical scheme (4.29) is obtained by the simple elim-

ination of x̂ terms in the system (3.48)-(3.49) it is clear that ifun
j = 1

wn
j

then

un+1
j = 1

wn +1
j

.

Furthermore by equation (3.49) it is clear that since thedj 's and A j � 1=2 are all

positive that un+1
~j

6 0 for some~j sincex̂n+1
J +1 � x̂n+1

J 6 0. Then the corresponding

wn+1
~j

must also be negative, but this is a contradiction with the strictly positive

initial data and the fact that the transformed scheme is TVD.

Lemma 4.4.3. If a moving mesh numerical scheme of the form (3.48)-(3.49) has a

corresponding transformed scheme (4.29) that has been shown to be TVD for� t 6 T,
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then the original moving mesh scheme is also TVD for� t 6 T.

Proof. We have already shown in the previous Lemma that for this choice of �t the



and it follows that since the transformed scheme is TVD we cannot have spurious

oscillations occurring in our solutionun
j .

4.5 Convergence

In the previous section we showed how a numerical scheme (3.48)-(3.49) which

approximates the moving frame formulation (3.44)-(3.45) may be transformed into

a reference space in order to determine conditions under which the scheme is total

variation diminishing.

In this section we will continue to use the reference space as a tool to show

convergence of an altered transformed scheme. We �rst introduce the notion of a

vanishing viscosity solution.

4.5.1 Vanishing Viscosity Solution

In general there are in�nitely many solutions to the weak form of the PDE (2.22).

We therefore seek the physically relevant solution and motivate this by introducing

the viscous regularisation through the problem

u�
t + f (u� )x = �u �

xx ; x 2 (a; b); t 2 R+ ; (4.58)

u� (x; 0) = u�
0(x); x 2 (a; b); (4.59)

u� (a; t) = u� (b; t); t 2 R+ ; (4.60)

where� > 0 and a and b are constant.



This requires that we show that the limiting solution satis�es the weak form of

the conservation law (2.22) and in order to show this we introduce the notion of

entropy.

De�nition 4.5.1 (Entropy and Entropy Flux) . Two smooth functions � (u) and

q(u) form an entropy/entropy ux pair of the conservation law (3.1) provided that

� (u) is convex and

q0(u) = � 0(u)f 0(u): (4.61)

Remark 4.5.2. Since we only consider scalar conservation laws, any convex

function of u is a valid entropy, � (u), with a corresponding entropy ux, namely

q(u) =
Z

� 0(~u)f 0(~u)d~u: (4.62)

It follows from the requirement (4.61) that for smooth solutions to the conserva-

tion law (3.1) the entropy also satis�es a scalar conservation law since,

� (u)t + q(u)x = � 0(u)ut + q0(u)ux

= � 0(u)ut + � 0(u)f 0(u)ux

= � 0(u)(ut + f (u)x )

= 0: (4.63)

However as we have previously stated, general solutions to the conservation law

(3.1) are not smooth. Hence we suggest replacing (4.63) by the inequality

� (u)t + q(u)x 6 0; (4.64)

which leads to the de�nition of an entropy solution to the conservation law (3.1).
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De�nition 4.5.3 (Entropy Solution). A function u is said to be an entropy solution

of the conservation law (3.1), with associated entropy/entropy ux pair (�; q ), if it

satis�es the weak form of the the PDE,

Z 1

0

Z b

a
( tu +  x f (u))dxdt +

Z b

a
 0u0dx = 0; (4.65)

and the entropy inequality,

Z 1

0

Z b

a
(� t � (u) + � xq(u))dxdt +

Z b

a
� 0� (u0)dx > 0; (4.66)

where  and � are periodic Lipschitz continuous test functions and� > 0. Note

that the subscript 0's here denote the initial condition of the function, i.e. when

t = 0.

Remark 4.5.4. We may also consider the regularised solution,u� , as an en-

tropy solution of the regularised PDE (4.58) provided that it satis�es the weak

form of (4.58) and the entropy equality

Z 1

0

Z b

a
(� t � (u� ) + � xq(u� ))dxdt +

Z b

a
� 0� (u�

0)dx = 0: (4.67)

Theorem 4.5.5. If u� is a smooth solution of the regularised PDE (4.58) and there

exists a functionu such that

u� ! u almost everywhere as � # 0; (4.68)

then u



Multiplying the regularised PDE (4.58) by the test function  and integrating

over (a; b) � [0; 1 ), it follows that by integration by parts

Z 1

0

Z b

a
( tu� +  x f (u� ) +  �u �

xx )dxdt +
Z b

a
 0u�

0dx = 0: (4.69)



and application of integration by parts yields (4.66) and therefore completes the

proof.

4.5.2 Regularisation in Reference Space

In previous work we have shown that we may obtain stability results for the class



Inserting de�nitions (4.25) and (4.76) into the regularised transformed PDE (4.75)

gives

w�
� + ~f (w� )� = �w �

�� : (4.77)

Similarly the transformed conservation law (4.74) is now given by

w�
� + ~f (w� )� = 0: (4.78)

4.5.3 Regularised Numerical Scheme



Setting cwn
j = x̂n

j � x̂n
j � 1 to be consistent with the scheme we started with, (3.64)-



We may also rearrange the reference space scheme (4.79) into the form required

for Harten's theorem. This gives the required coe�cients to be

Cj � 1=2 =
� �
c

�
1

2wn
j wn

j � 1
+

�
c

�
and D j +1 =2 =

� � �
c2

(4.84)

which may both be shown to be non-negative since all of the variables are known to

be positive. All that remains is to show under what conditions

1 � Cj � 1=2 � D j � 1=2 > 0: (4.85)

Inserting Cj � 1=2 and D j � 1=2 into this inequality gives the timestep restriction,

� t 6
2c2

4� + cun
j un

j � 1
: (4.86)

4.5.5 Rate of Convergence

In the previous section we were able to show that we may choose the timestep

of the scheme such that the scheme is TVD. However, this does not guarantee

convergence to the correct solution.

We now introduce some important concepts before showing how convergence can

be obtained.

De�nition 4.5.7. The L1 ([0; T]; Lp(
)) Bochner norm is de�ned as

jjujj L 1 ([0;T ];L p (
)) = ess supt2 [0;T ]jju(t)jj L p (
) (4.87)

where ess sup is the essential supremum which is the supremum over all but �nitely

many points. Furthermorep > 1 and 
 is the spatial domain.
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To simplify notation we denote the Bochner norm by

jjujj L 1 (L p ) (4.88)

where there is no confusion in doing so.

In this section we aim to obtain a bound on the error of the regularised scheme

(4.82) of the form

jju � u�
h jj L 1 (L 1 ) 6 E(� ) (4.89)

whereu�
h is the regularised moving mesh numerical solution,u is the entropy solution

to the conservation law (3.1), andE(� ) is some function also to be determined.

Theorem 4.5.8. Let u be the entropy solution to the conservation law (3.1) with an

initial condition, u0(x), and periodic boundary conditions andu�
h be the numerical

approximation (4.82). Further assume thatw� is bounded and su�ciently smooth so

that w�
� < C 1, w�

�� < C 2, w�
���� < C 3 and w�

� � < C 4. Then the error betweenu and

u�
h is given by

jjw � w�
h jj L 1 (L 1 ) 6 C5ju0jT V

p
t� +

� �C 4

2
+

� �
4K �

�
2f C2

1 jju3
0jj L 1 � C2jju2

0jj L 1

�
�

� � � 2

12K 2
�

C3

(4.90)



a smooth solution of the regularised PDE then

jju � u� jj L 1 ([0;T );L 1 (a(t );b(t ))) 6 C5ju0jT V

p
t�: (4.91)

whereC5 is a constant independent of� .

We refer the reader to Theorem 6.1 of [Fur01] for the proof of this result.

Lemma 4.5.10. Let w be the entropy solution to the transformed conservation law

(4.78), w�
h be the regularised transformed numerical solution given by (4.79),u be the

entropy solution of the conservation law (3.1), andu�
h be the moving mesh numerical



and since bothu and u� are positive and bounded by the initial conditionu0(x),

jjw � w�
h jj L 1 (L 1 (0;1)) >

1
jju0jj L 1 K �

ess supt2 [0;T ]

Z b(t )

a(t )
ju � u�

h jdx̂: (4.96)

Rearranging and using the de�nition of theL1 (L1) norm yields the result.

Proof of Theorem 4.5.8. We start by considering the error between the entropy so-

lution of the transformed conservation law and the transformed numerical solution

and using the triangle inequality

jjw � w�
h jj L 1 (L 1 ) 6 jjw � w� jj L 1 (L 1 ) + jjw� � w�

h jj L 1 (L 1 ) ; (4.97)

wherew� is the solution to the regularised transformed PDE.

Since w is an entropy solution to a conservation law andw� is the vanishing

viscosity regularisation we may apply Theorem 4.5.9 to obtain a bound onjjw �

w� jj L 1 (L 1 ) . Hence

jjw � w�
h jj L 1 (L 1 ) 6 C5jw0jT V

p
t� + jjw� � w�

h jj L 1 (L 1 ) : (4.98)

The �nal term on the right hand side of (4.98) is the error between the solution

of the regularised transformed PDE and the transformed numerical solution. Hence

we refer to the truncation error given by (4.83), so that

jjw � w�
h jj L 1 (L 1 ) 6 C5jw0jT V

p
t� +

� �
2

w�
� � +

� �
4K �

�
1

w�

�

��

�
� � � 2

12K 2
�

w�
���� : (4.99)

Directly di�erentiating
�

1
w �

�
��

gives

�
1

w�

�

��

=
2(w�

� )
2

(w� )3
�

w�
��

(w� )2
(4.100)
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which can be inserted into (4.99) to give

jjw � w�
h jj L 1 (L 1 ) 6 C5jw0jT V

p
t� +

� �
2

w�
� � +

� �
4K �

�
2(w�

� )
2

(w� )3
�

w�
��

(w� )2

�
�

� � � 2

12K 2
�

w�
���� :

(4.101)

Using the assumptions of bounds on the derivatives ofw� in equation (4.101)

yields

jjw � w�
h jj L 1 (L 1 ) 6 C5jw0jT V

p
t� +

� �C 4

2
+

� �
4K �

�
2C2

1

(w� )3
�

C2

(w� )2

�
�

� � � 2

12K K K



We run the schemes multiple times doubling the number of intervalsN each time

and calculating the error, eN = ju(x̂n
j ; tn ) � un

j j, in the Bochner normsL1 (L1),

L1 (L2) and L1 (L1 ). We then calculate the experimental order of convergence

(EOC) using

EOC(N ) =
log

�
jj eN= 2 jj
jj eN jj

�

log(2)
(4.104)

where the norms correspond to the Bochner norm the error is measured in.

The experimental order of convergence is a useful notion for showing that the

results of the numerical schemes are consistent with the theoretical rates of conver-

gence. To this end what we actually seek is what happens to the EOC asN ! 1 .

The EOC works by taking successive mesh re�nements and calculating the error in

the coarser mesh divided by the error in the �ner mesh. In order to make the results

easier to see on a graph we take the natural logarithm of this fraction and divide by

another natural logarithm to normalise. In this thesis we double the computational

nodes in each successive test. This is why Equation (4.104) has the division by

log(2), if we instead had chosen to triple the number of nodes for each comparison

we would instead choose log(3).

Note that in this Section we will show graphs with the Bochner norm errors for

each time the code is run. The lighter colours, starting with yellow, represent the

fewest number of computational intervals while the darker colours, ending in black,

have the highest number of intervals.
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Linear Advection Equation

We start by testing the scheme on the linear advection equation. This is a very

simple problem, however it is important since it will highlight several key points

concerning how the scheme performs. The equation is given by

ut + ux = 0; (4.105)

where we take the boundary condition to be that of the free Lagrangian boundary.

In this case the Lagrangian velocity is simply ^x t = 1.

We use the numerical method derived in the example in Section 3.6.1. Explicitly

this is

8
<

:
x̂n+1

j = x̂n
j + � t

(x̂n
j � x̂n

j � 1)un
j = A

: (4.106)

The �rst initial data we apply this scheme to is

u(x; t ) =
1

exp(5x2)
+ 0:1; x 2 [� 2; 2]: (4.107)

Note that we have added 0:1 to the initial condition due to our requirement that

u(x; t ) > 0.

In Figure 4.3 we see that the EOC in all three norms is 1 and the errors do not

increase in time. This is as we would expect since Forward Euler is exact for linear

problems and the only error is in the data representation of the numerical solution.
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Figure 4.3: Global Errors and associated EOC for the numerical scheme (4.106)
applied the linear advection equation with initial data (4.107). TheL1 (L1 ) error
is on the left, the L1 (L2) error is in the middle and theL1 (L1) is on the right.

A more challenging problem is to see how the scheme copes when there is a

discontinuity in the initial data. We therefore propose the initial data

u(x; t ) =

8
<

:
0:15 x 6 � � 3

0:05 x > � � 3
; (4.108)

this ensures that the discontinuity will not have a node placed on it in the initial

node placement which is important since otherwise the scheme is exact for piecewise

constant initial data.

In Figure 4.4, it may be initially worrying that we do not see convergence in

the L1 (L1 ) norm, however this is to be expected since this error is caused at the

discontinuity. Increasing the nodes in the scheme reduces the error inL1 (L1) and

L1 (L2) however it does this by reducing the distance of nodes from the discontinuity,

the L1 (L1 ) error however remains equal to the jump in the discontinuity since a

105



0 0.5 1 1.5 2 2.5 3
10

-7



It is noted that unlike the linear advection case, this time the scheme is not exact

in time hence we expect the error to increase in time.

We use the initial data

u(x; t ) =

8
>>><

>>>:

x + 0:1 x 2 [0; 1]

2:1 � x x 2 (1; 2]

0:1 otherwise

; (4.111)

which is initially piecewise linear and forms a shock at timet = 1.

0 0.5 1 1.5

Figure 4.5: Global Errors and associated EOC for the numerical scheme (4.110)
applied the linear advection equation with initial data (4.111). TheL1 (L1 ) error
is on the left, the L1 (L2) error is in the middle and theL1 (L1) is on the right.

In this test case we appear to converge in all norms pre-shock theL1 (L1) error

has a steady convergence rate of 1 in this region, theL1 (L2) error starts at a

convergence rate of 1 but decreases to a rate of 0.8 as shock time is approached and

the L1 (L1 ) error converges at a rate of about 0.5. The noise in theL1 (L1) error
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is likely due to the derivative discontinuity in the solution passing the nodes with

the error peak at the centre of each cell.

In the post-shock time regime we no longer converge inL1 (L1 ). This may be

due to similar issues with the discontinuity in the previous example, namely there

is not a node on the discontinuity and therefore the error in this norm cannot be

less than the jump in the shock. TheL1 (L2) error converges in the post-shock time

regime with a rate of 0.5 and theL1 (L1) error appears to continue to converge with

a rate of 1, this needs studying further to determine why.

In conclusion the schemes do converge in theL1 (L1) norm as expected. Issues

occur in the L1 (L1 ) norm due to errors around the discontinuity which is not



Chapter 5

Lagrangian Schemes Based on

Existing Conservative Schemes

In the previous chapter we used a transformation of the conservation law and the

moving mesh scheme to a reference space in order to �nd stability conditions for

the scheme and prove convergence. The proof of convergence relied on regularising

the numerical scheme in the reference space and working backwards to see how this

changed the original moving mesh scheme.

In this section we build upon the idea that we can take schemes applied to the

transformed conservation law and work backwards to a moving mesh mass conser-

vative scheme. Hence instead of applying a scheme to the original conservation

law

ut + f (u)x = 0; (5.1)
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we instead apply standard �nite di�erence schemes to the transformed PDE

w� + ~f (w)� = 0; (5.2)

where ~f (w) = � w
K �

f
�

1
w

�
.

The bene�t of this approach is that if we are able to �nd a method for taking

established �nite di�erence schemes and deriving moving mesh schemes from them,

then our work from Sections 4.3 - 4.5 proves that the resulting scheme will have the

same stability conditions and be convergent.

5.1 Existence of Schemes



Theorem 5.1.2. If a �nite di�erence scheme can be written in conservation form

then it admits at least one conservative moving mesh scheme for the conservation

law (5.1) when applied to the reference space conservation law (5.2).

Proof. Applying the general conservation form (5.3) to the transformed conservation

law (5.2) gives

wn+1
j = wn

j �
� �



which we note is in the form of the general quadrature (3.49). Equation (5.8) may

then be substituted into (5.7) to give,

x̂n+1
j � x̂n+1

j � 1 � x̂n
j + x̂n

j � 1 = � �
�

~G(wn
j � p; wn

j � p+1 ; � � � ; wn
j + q)

�



This non-uniqueness of moving mesh schemes can be seen if we consider the

assumption (5.8) made in arriving at the moving mesh scheme. An equally valid

approximation to local mass conservation would be

Awn
j = x̂n

j +1 � x̂n
j : (5.12)

Following the same steps as the proof of theorem 5.1.2 yields the alternative

timestepping scheme

x̂n+1
j = x̂n

j + � t ~G(wn
j � 1� p; wn

j � p; � � � ; wn
j + q� 1): (5.13)

It is clear that any quadrature which allows us to eliminatew terms on the LHS

of equation (5.7) will produce a distinct moving mesh scheme for the original PDE.

Hence the scheme is only unique up to the choice of quadrature approximation

to the monitor function and it remains to be shown if there is a 'best' choice of

approximation to produce a moving mesh scheme.

5.3 An Example Scheme

To illustrate the derivation of the moving mesh formulation we consider how we

apply the well known �rst order upwind approximation,

un+1
j = un

j +
� t
� x

�
F (un

j ) � F (un
j � 1)

�
; (5.14)

to the Inviscid Burgers equation,

ut +
�

u2

2

�

x

= 0: (5.15)
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Using the general forms (5.1) and (5.2) it can be easily shown that in the trans-

formed reference space the PDE associated with Inviscid Burgers equation is,

w� �
1

2K �

�
1
w

�

�

= 0: (5.16)

Applying the �rst order upwind approximation (5.14) to the transformed PDE

(5.16) and noting that K � � � = A gives the reference space scheme,

wn+1
j = wn

j �
� �
2A

�
1

wn
j

�
1

wn
j � 1

�
; (5.17)

which we note is the transformed scheme from Example 3.6.3 in Section 3.6. Indeed,

taking the same approximation as in the example, namely

Awn
j = x̂n

j � x̂n
j � 1; (5.18)

yields

x̂n+1
j � x̂n+1

j � 1 � x̂n
j + x̂n

j � 1 =
� �
2

�
1

wn
j

�
1

wn
j � 1

�
: (5.19)

The anchor point, the fact that � � = � t and un
j = 1

wn
j

gives the timestepping

scheme to be

x̂n+1
j = x̂n

j +
� t
2

un
j : (5.20)
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The overall moving mesh scheme to solve the Inviscid Burgers equation (5.15) is

then

x̂n+1
j = x̂n

j +
� t
2

un
j ; (5.21)

A = un
j

�
x̂n

j � x̂n
j � 1

�
; (5.22)

which is the scheme we started with in the example in section 3.6. However as noted

in section 5.2 this is not the only moving mesh scheme that can be derived from

starting with �rst order upwind as a method.

Instead of approximating the local mass integral using (5.18) we instead use the

approximation (5.12) which leads to the timestepping scheme

x̂n+1
j = x̂n

j +
� t
2

un
j � 1: (5.23)

The alternative scheme is then given by

x̂n+1
j = x̂n

j +
� t
2

un
j � 1; (5.24)

A = un
j

�
x̂n

j +1 � x̂n
j

�
: (5.25)

This leads us to the obvious question of which scheme is actually better for solving

the original Inviscid Burgers equation. As both are derived from the same reference

space numerical scheme, it is clear from the results of Section 4.4 that they both

have the same stability condition and accuracy.
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5.4 Higher Order Schemes

Having established that we may use existing �xed mesh schemes as a basis for

generating moving mesh schemes, it remains to be discussed what e�ect changing

the order of the underlying scheme has on the resulting moving mesh scheme.

It is clear that since higher order schemes can be written in conservation form

then they also produce moving mesh schemes when applied to the transformed

PDE. However this does not guarantee that the resulting scheme will be of the same

order or even an increased order. Fortunately the work of Section 4.3 applies and

therefore the schemes generated are of the same order as the Eulerian scheme used

to generate them.

5.5 Numerical Comparisons

In the rest of this section we have developed the idea of using established �xed

grid numerical methods as a way of generating moving mesh methods. It remains

to give a demonstration of why we would choose to do this extra work in deriving a

scheme.

In this section we compare the results of directly applying the �xed grid schemes

with the results of the resulting moving mesh schemes as numerical motivation for

this extra work.

The schemes we will consider are the �rst order upwind scheme

un+1
j = un

j �
� t
� x

(F n
j � F n

j � 1); (5.26)
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and the second order upwind scheme

un+1
j = un

j �
� t

2� x
(3F n

j � 4F n
j � 1 +n



−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

xu

(a) First Order Upwind

−1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

(b) Second Order Upwind

Figure 5.1: Numerical comparison of the moving mesh schemes (blue) and the Eule-
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Figure 5.2: Numerical comparison of the moving mesh schemes (blue) and the Eule-
rian schemes (black) which they are derived from when applied to Inviscid Burgers'
Equation. The exact solution is plotted in red.
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Chapter 6

Systems of Equations

In this chapter we attempt to apply the conservation based moving mesh methods

to a system of hyperbolic conservation laws to see if the insights we have obtained

in the scalar case can help.

We start by briey discussing some of the issues that arise when attempting to

solve systems of equations before looking at the isothermal Euler equations as a test

problem.

6.1 Problems that Arise with Systems of Equa-

tions

In this section we briey cover some of the issues that occur when attempting to

solve systems of equations with our conservation based moving mesh methods.

The �rst major di�erence is that we are now considering more than one conser-

vation law and as a result we must choose which of the conserved quantities will

be used as a monitor function to �nd the mesh velocity. Special care has to be
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taken here to ensure that the conserved quantity cannot be zero in the domain or

the scheme will break down. Another item to note is that we cannot take the con-

servation law in vector form and conserveu since this would lead to a vector of

positions for each node, although it may be possible to consider some functional of

the components ofu.

The next major problem that arises is that the reference space PDEs are much

more di�cult to solve and are indeed on par with the original physical space conser-

vation laws. To overcome this we change direction slightly for systems and instead

consider ax̂ equation in the reference space.

Now that we have briey discussed some of the issues with systems of equations

we now move on to attempt to solve the isothermal Euler equations.

6.2 Isothermal Equations

In this section we consider the 1D Isothermal equations given in Eulerian co-

ordinates by

� t + ( �v )x = 0; (6.1)

(�v )t + ( �v 2 + P)x = 0; (6.2)

where � > 0 is density, v is the uid velocity, P = a2� is the pressure anda is the

wave speed.

We consider the system for general initial conditions� (x; 0) = � 0(x) and v(x; 0) =

v0(x), and periodic boundary conditions.
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6.2.1 The Lagrangian Formulation

As in the case of scalar conservation laws we apply Leibniz integral rule to �nd

the Lagrangian formulation of the problem. Application to the conservation of mass

equation (6.1) gives

d
dt

Z x̂2 (t )

x̂1 (t )
�dx =

Z x̂2 (t )

x̂1 (t )
� tdx + [ � x̂ t ]

x̂2 (t )
x̂1 (t )

= �
Z x̂2 (t )

x̂1 (t )
(�v )xdx + [ � x̂ t ]

x̂2 (t )
x̂1 (t )

= [ � x̂ t � �v ]x̂2 (t )
x̂1 (t ) ; (6.3)

and similar application to the momentum equation (6.2) gives

d
dt

Z x̂2 (t )

x̂1 (t )
�vdx =

Z x̂2 (t )

x̂1 (t )
(�v )tdx + [ �v x̂ t ]

x̂2 (t )
x̂1 (t )

= �
Z x̂2 (t )

x̂1 (t )
(�v 2 + P)xdx + [ �v x̂ t ]

x̂2 (t )
x̂1 (t )

= [ �v x̂ t � �v 2 � P]x̂2 (t )
x̂1 (t ) : (6.4)

All that remains is to decide on the monitor function which will be used. The two

obvious choices for monitor functions are the density,� , and the momentum, �v ,

however we note that the monitor function must be one-signed and hence momentum

is not suitable sincev may be zero or negative.

Taking density, � , as the monitor function implies that the left hand side of the

balance equation (6.3) is identically zero for all ^x1, x̂2. Hence

[� (x̂ t � v)]x̂2 (t )
x̂1 (t ) = 0 (6.5)
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for all x̂1, x̂2 which, since� is one-signed, implies that ^x t = v. The Lagrangian

formulation given by the density monitor is therefore

x̂ t = v; (6.6)
Z x̂2 (t )

x̂1 (t )
�dx = A(x̂1(t); x̂2(t)) ; (6.7)

d
dt

Z x̂2 (t )

x̂1 (t )
�vdx = � [P]x̂2 (t )

x̂1 (t ) (6.8)

whereA(x̂1(t); x̂2(t)) is constant in time.

Our aim is to solve the system (6.6)-(6.8) for ^x(t) = x̂2(t) (given an anchor point

x̂1(t)) and then recover the solutions� and v at these positions.

6.2.2 A Lagrangian Numerical Scheme

Having found the Lagrangian formulation (6.6)-(6.8) based on the density monitor

in the previous section, we now discretise this set of equations by following a similar



Introduce a set of discrete pointsf x̂ j (t)g at time t and let x̂1(t) = x̂ j (t) and

x̂2(t) = x̂ j +1 (t) de�ne an individual cell of the discrete scheme. Assuming that

� and v are constant within a cell (x̂ j ; x̂ j +1 ) leads to the spatial discretisations of

equations (6.9) and (6.10), which are

� j (x̂ j +1 (t) � x̂ j (t)) = A j +1 =2 (6.11)

and

� j vj (x̂ j +1 (t) � x̂ j (t)) = B j +1 =2(t); (6.12)

whereB j +1 =2(t) is the semi-discrete approximation to the momentum integralB (t) =
Rx̂ j +1 (t )

x̂ j (t ) � (t)v(t)dx.

We note that in the above, all constant approximations of� and v in a cell are

chosen to be biased by taking the value at the left hand side of the cell. Further we

note that equations (6.11) and (6.12) lead to a simple relationship betweenA j +1 =2

and B j +1 =2(t), namely

A j +1 =2vj (t) = B j +1 =2(t): (6.13)

Together equations (6.6), (6.8), (6.11) and (6.12) form a semi-discrete numerical

scheme in which the spatial co-ordinate ^x(t) is discretised and time remains continu-

ous. To obtain a fully discrete formulation it remains to discretise the time evolution

in equations (6.6) and (6.8).

Application of the forward Euler method to equation (6.6) yields

x̂n+1
j = x̂n

j + � tvn
j ; (6.14)
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The transformation of the independent variables is given by ^x(�; � ) ! � , t ! � ,

following from Equation (4.13), leading to the transformations

@t = @� �
x̂ �

x̂



point ~� 2 (0; 1] giving

A( ~� ) =
Z ~�

0
� x̂ � d�: (6.26)

We may now di�erentiate (6.26) to give

A � = � x̂ � ; (6.27)

where we note thatA � is a constant. This follows from the scalar case and involves

comparing the right hand side of (6.26) with the equidistribution principle for� .

Inserting (6.27) into equations (6.23) and (6.25) gives the reference space isother-

mal equations,

� � +
� 2

A �
v� = 0; (6.28)

v� +
a2

A �
� � = 0: (6.29)

In the scalar case, having found the reference space transformations of the original

PDEs we applied Harten's Theorem to show that the transformed scheme was TVD

under certain timestep restrictions. We cannot use the same method here since it

does not apply for systems of equations and we must therefore consider a new notion

of stability.

Instead of concerning ourselves with the stability of the system (6.28)-(6.29) we

instead look at the mesh stability. The motivation for this is found by considering

equations (6.6) and (6.27) which show relationships between� , v and the derivatives
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of our mesh variable ^x, namely

x̂ � = v and x̂ � =
A �

�
:

Di�erentiating (6.6) with respect to � and using (6.29) and (6.27) eliminates�

and v and gives

x̂ � � = v� = �
a2

A �
� � = � a2

�
1
x̂ �

�

�

(6.30)

which may be rearranged to give the mesh PDE

x̂ � � = a2 x̂ ��

x̂2
�

: (6.31)

Since equation (6.31) is a non-linear wave equation we could use existing theory

concerning �nite di�erence schemes for second order equations in an attempt to show

that the transformed scheme derived from equations (6.17)-(6.19) is stable under

some condition, however this is not a common form of nonlinear wave equation

and standard results such as assuminga
2



energy conservation property" [Fur01] and presented in a general Eulerianu(x; t )

framework.

The family of nonlinear wave equations that are considered in [Fur01] take the

form

@2u
@t2

= �
�G
�u

; (6.32)

whereG = G(u; ux ) is a function of both u and ux and �G
�u = @G

@u � @
@x

�
@G
@ux

�
is the

variational derivative of G with respect to u. Furthermore x 2 [0; L]; L < 1 is the

one-dimensional spatial variable andt is the time variable.

De�nition 6.2.1. Given u(x; t ) and a function G of u, ux the energy integral is

de�ned to be

I =
Z L

0

�
1
2

u2
t + G

�
dx: (6.33)

Theorem 6.2.2. [Fur01] If the boundary conditions satisfy

[Gux ut ]
L
0 = 0; (6.34)

then the energy integral,I , is conserved in time, i.e.

d
dt

Z L

0

�
1
2

u2
t + G

�
dx = 0: (6.35)

Proof. Applying Leibniz integral rule to the left hand side of equation (6.35),

d
dt

Z L

0

�
1
2

u2
t + G

�
dx =

Z L

0
(utt ut + Guut + Gux uxt ) dx: (6.36)
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Now use integration by parts on the �nal term of the integrand and apply the

de�nition of the variational derivative,

d
dt

Z L

0

�
1
2

u2
t + G

�
dx =

Z L

0
ut



where f l (uj ) are functions ofuj , g+
l (uj ) are functions ofuj which approximate ux

using an upwind di�erence andg�
l (uj ) are functions of uj which approximate ux

using a downwind di�erence.

Having found a consistent approximationGd we now use it to calculate a discrete

equivalent to the variational derivative �G
�u which we denote �G d

� (u j ;vj ) . This is achieved

by considering the following property of the variational derivative, namely

Z L

0
G(u)dx �

Z L

0
G(v)dx �

Z L

0

�G
�u

(u � v)dx + [ Gux (u � v)]L
0 : (6.41)

Before we can consider a discrete equivalent to (6.41) we �rst consider a discrete

equivalent of integration by parts.

Theorem 6.2.3 (Summation by Parts).



Equation (6.43) can easily be veri�ed by applying the summation by parts formula

to the left hand side of (6.43).

Equation (6.43) suggests that if we insert our approximationGd into the left hand

side of (6.43) and apply the summation by parts formula then we should arrive at



a stable scheme for the mesh movement and use this in a new Lagrangian scheme

for solving the isothermal equations.

The main di�erence between the Lagrangian scheme derived in section 6.2.2 and

the one we will derive here is the equations that we are approximating. In Section

6.2.2 our approximations were of the system of equations (6.6)-(6.8): now we choose

to approximate equations (6.31), (6.27) and (6.6) which we restate for clarity,

x̂ � � = a2 x̂ ��

x̂2
�

; (6.46)

x̂ � =
A �

�
; (6.47)

x̂ � = v: (6.48)

The method we propose uses the Furihata scheme on (6.46) to update the mesh

and once the desired time has been reached, approximations to (6.47) and (6.48) to

recover the density and velocity respectively.

To �nd the Furihata scheme we must �rst relate equation (6.46) with the general

nonlinear wave equation (6.32). It can be easily veri�ed that equation (6.46) is

indeed of the desired form with

G(x̂; x̂ � ) = � a2 ln(x̂ � ): (6.49)

We approximate the functionG using (6.40) in the form

Gd(x̂ j ) = �
a2

2

�
ln(� + x̂ j ) + ln(



Inserting (6.50) into the left hand side of equation (6.43) gives

NX

j =0

(Gd(x̂n
j ) � Gd(x̂n� 1

j ))� � = �
a2

2

NX

j =0

( ln( � + x̂n
j ) + ln( � � x̂n

j )

� ln(� + x̂n� 1
j ) � ln(� � x̂n� 1

j ))� �; (6.51)

and applying the summation by parts formula gives

NX

j =0

(Gd(x̂n
j ) � Gd(x̂n� 1

j ))� � =
a2

2

NX

j =0

 

� �

 
ln(� + x̂n

j ) � ln(� + x̂n� 1
j )

� + x̂n
j � � + x̂n� 1

j

!

+ � +

 
ln(� � x̂n

j ) � ln(� � x̂n� 1
j )



In order to get around this issue we rewrite (6.53) as

�G d

� (x̂n
j ; x̂n� 1

j )
= a2

 
ln(1 + � )
� �^xn

j � 1=2

�
ln(1 + � )
� �^xn

j +1 =2

!

(6.54)

where� =
�^xn

j � 1=2 � �^xn � 1
j � 1=2

�^xn
j � 1=2

and � =
�^xn

j +1 =2 � �^xn � 1
j +1 =2

�^xn
j +1 =2

.

Assuming that we are taking su�ciently small timesteps such that� and � are

small then we may approximate (6.54) using the Taylor expansion of ln(1+� ). Hence

�G d

� (x̂n
j ; x̂n� 1

j )
� a2

 
1

�^xn
j � 1=2

�
1 �

�
2

�
�

1
�^xn

j +1 =2

�
1 �

�
2

� !

= a2

 
3
2

 
1

�^xn
j � 1=2

�
1

�^xn
j

�
ln(1 + �

 
1 xn� 1

j � 1=2

n
j � 1=2



velocity everywhere. The initial condition is given by

� (x; 0) =

8
<

:
(1 � x2)2 + 0:1 jxj 6 1

0:1 otherwise
; (6.56)

and

v(x; 0) = 0: (6.57)



It is clear from Figure 6.1 that the scheme is oscillatory in both solutions and the

mesh. To further show this we plot the trajectories of the mesh in Figure 6.2.

Figure 6.2: The mesh trajectories of the conservation base moving mesh scheme
derive in Section (6.2.5) applied to the isothermal equations with initial data (6.56)-
(6.57) and boundary conditions (6.58).

Figure 6.2 shows that our attempts to �nd a scheme in which the mesh does not

tangle were successful however the mesh still oscillates near solution discontinuities

which causes the solution oscillations. These oscillations appear to occur regardless

of timestep leading to the conclusion that the Furihata scheme may not be su�cient

for the mesh PDE. Further work is required to see if another Eulerian solver in

reference space can lead to a non-oscillatory mesh.
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Chapter 7

Summary and Further Work

In this chapter we summarise the work done in this thesis and suggest some further

research which may be carried out. The novel contributions of the thesis are also

noted.

7.1 Summary

Chapter 1 introduced the work of the thesis, giving an overview of the work that

would be carried out and the original work done.

In Chapter 2 we discussed the background knowledge required for the work in the

rest of the thesis. In addition we also briey noted some of the recent developments

in the surrounding areas of research. The chapter was broken into three sections

which focused on hyperbolic conservation laws, relocation re�nement (r-re�nement)

methods and the conservation based Lagrangian moving mesh methods. The hyper-

bolic conservation laws section introduced some example problems that we would

use later while the �nal two sections helped introduce the methods we studied.
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The main aim of Chapter 3 was to take the two main areas studied in the back-

ground chapter and use them to develop a general conservation based moving mesh



Finally, in Chapter 6 we attempted to use the work from scalar conservation laws

to generate a scheme for systems of hyperbolic conservation laws. We discussed

several issues that arise when considering systems of equations before attempting

to solve the isothermal Euler



di�cult and care needs to be taken since vorticity can add new ways of tangling
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