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Chapter 1

Introduction

Many equations used in atmosphere and ocean modelling, including the Euler

equations of gas dynamics and the shallow water equations, are conservation laws

derived assuming the conservation of a particular quantity. Increasingly, Finite

Element Methods (FEM) are being employed to solve such equations due to their

ability to handle complex geometries. Research is ongoing into ways to improve

the accuracy of the numerical solution without significantly increasing the com-

putational cost and generally follows one of two routes.

Conservation laws often have discontinuous numerical solutions even if the initial

data is smooth and continuous. Using standard FEM which work in the contin-

uous domain, there is a limitation on how well sharp gradients and shocks can

be captured, so it would seem natural to model the solution in a discontinuous

manner. The Discontinuous Galerkin (DG) method developed by Reed and Hill

[15] is an example of such a technique.

The other approach commonly used is to apply grid adaptation techniques to

the standard FEM. Such techniques may include mesh refinments or the use of

higher order polynomial approximations in the region of the shock, and Arbitrary

Lagrangian-Eulerian (ALE) methods [16], also known as moving meshes, which
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Introduction

cluster nodes around the feature and follow the feature as it moves over time.

In more recent years, research has looked at combining these two approaches

to provide even better results, incorporating grid adaptation techniques into the

discontinuous FEM. The use of a moving mesh algorithm with the DG technique

was investigated by Li and Tang [14] who looked at mapping-based methods. We

shall also consider the use of moving mesh algorithms but choose to focus on

velocity-based methods instead.

In this dissertation we firstly look at the stationary DG method and in Chapter 2

we consider the Runge-Kutta Discontinuous Galerkin (RKDG) method developed

by Cockburn and Shu [11]. In Chapter 3 we discuss various grid adaptation tech-

niques before progressing to include some velocity-based moving mesh algorithms

into the DG method in Chapters 4 and 5.

In Chapter 4, we focus on cell-based methods and derive the boundary velocities

through imposing a conservation principle on each cell. We derive a cell-based

method, and some variations, using the local Lax Friedrichs numerical flux at cell

boundaries. Additionally, we derive a cell-based method where no flux calculations

are required. Through solving simple linear and nonlinear test cases, we evaluate

the success of these cell-based methods.

In Chapter 5, we derive a moving DG method without the use of the conservation

principle seen in Chapter 4. In this method, the velocities may be obtained from

an external source, and we consider a boundary-based method where the boundary

speeds may be taken as the notional shock speed associated with the discontinuity

in the numerical solution. The results of numerical tests are given in Chatper 6

where we also consider the case of zero boundary speeds and compare with the

stationary RKDG method from Chapter 2.

Application of the boundary-based moving mesh method to a 1D system of non-
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linear equations is considered in Chapter 7, where the method is derived for the

shallow water equations. Some results of preliminary tests for the tidal bore prob-

lem and dam-break problem are given in Chapter 8.

Finally, in Chapter 9, we make some general conclusions and consider possible

future work.
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The Stationary RKDG Method

The numerical flux may be calulated in many ways, with the Lax-Friedrichs

and Godunov schemes providing typical forumlae. Although the accuracy of the









The Stationary RKDG Method

2.3.2 Inviscid Burgers









Moving Mesh Methods

3.2.1 Cell-based techniques



















Cell-based Moving Mesh Methods
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Cell-based Moving Mesh Methods

4.2.3 Results





Cell-based Moving Mesh Methods
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A Boundary-based Moving Mesh Method

5.1.2 The weak formulation





















Numerical Results for the full-DG Method

is becoming very steep, although the vertical shock has not yet formed.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5



Numerical Results for the full-DG Method

and then at adopting a fixed boundary speed across all boundaries.

6.3.1 Adjustments through speed averaging

We first use the average speed technique to amend boundary speeds around prob-

lem cells which would otherwise become too small at the next timestep.
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Numerical Results for the full-DG Method



Numerical Results for the full-DG Method

Although the shock capture is generlly not as good as the results seen for the

stationary methods, even though the nodes are more densly concentrated, this

method has the potential to allow different regions of the mesh to move at different

average speeds, allowing multiple features of interest to be followed which may

prove useful in some situations.

6.3.2 Adjustments through adopting a fixed speed

We now consider using the adoption of a fixed speed to control the cell distribution.

Using the fixed speed method, all boundaries are moved with a uniform velocity

determined by an approximation to the shock speed. For the test case given by



Numerical Results for the full-DG Method
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Numerical Results for the full-DG Method
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Chapter 7

Shallow Water Equations

The shallow water equations may be used for modelling fluid flow in situations

where the vertical motion can be considered insiginificant in comparision to the

horizontal motion. The equations desribe the flow of a fluid at a single pressure

height and are not able to model factors which vary with height. For the use of the

equations to be appropriate, the wavelength of the phenonmenon being modelled

must be much larger than the depth of the fluid. This means that, in spite of

the name, shallow water equations may be used in deep ocean basins if we are

modelling tidal motion due to the large tidal wavelength.

The stationary DG method has been applied to many shallow water problems, with

Yu and Kyozuka [17] investigating both tidal flows and the dam-break problem.

For application of the moving mesh algorithm developed in Chapter 5, we shall













Shallow Water Equations

7.1.3 Choosing boundary speeds

In the full-DG method from Chapter 5, the boundary speeds are taken as the













Numerical Results for Shallow Water Equations

distibution algorithm being poorly designed to cope with the multiple shocks that

are present.
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Chapter 9

Summary and Further Work

9.1 Summary

This dissertation looked to find a moving mesh method for use with the Discon-

tinuous Galerkin (DG) Finite Element Method , and this has been achieved for a

single equation, although only preliminary results were avaliable for the extended

algorithm for a 1D system.

We began by considering the stationary Runge-Kutta DG method developed by

Cockburn and Shu [11], and commonly used grid adaptation techniques, including

velocity-based moving mesh methods. From this, we persued two different routes

for obtaining a moving DG method.

Firstly, we considered cell-based moving mesh methods, where the boundary

speeds were derived assuming a conservation principle on each cell. Such methods

had limited success, possibly due to the use of numerical fluxes, and inconsisten-

cies in the use of the conservation principle which directly links cell widths to the





Summary and Further Work

9.2 Extensions

Due to time constraints, we were unable to fully develop and test a velocity-based

moving mesh DG method for a 1D system, and there is the potential for much

futher work in this area. The periodicity of the boundary conditions was not

realistic for the dam-break and tidal bore test problems, so amending the full-DG

method for non-periodic boundary conditions would be a natur



could be particularly important for the tidal bore test case, as bores are known to

develop in rivers that not only become shallower, but also significantly narrower,








