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Abstract

This dissertation describes a finite difference moving mesh method to model the dif-

fusion of a homogenous non reacting solvent through a porous material based on two

regions, for slow and superfast diffusion. These regions are joined at an interface posi-

tion. The slow and superfast regimes are governed by different forms of the nonlinear

porous medium equation. The numerical method, which is based on conservation, is

derived in detail and discussed. Velocities are calculated for spatial nodes on a 2-

dimensional radial mesh, and as a result the position and solution at the spatial nodes

are updated at each time step as the solvent spreads. The calculation of velocities

requires knowledge of the masses between adjacent nodes, which change with time.
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1 Introduction

The migration of contaminants or reactants through porous media is of critical impor-

tance for a wide variety of scienti�c and industrial processes. This process can include

both reaction with and without the porous media.1 Contamination of soils and sands

for example, by liquid pollutants can result in those pollutants entering groundwater

systems, thus increasing the chance of harm to crops and ecosystems, and water sup-

plies to the public. It is important therefore to characterise such phenomena, and be

able to predict the fate of such species, dependent on porousmedia and pollutant type,

over a wide range of conditions. It is known that the nonlinear di�usion of unreactive

pollutants can be classi�ed into slow, fast or superfast di�usion, dependent on the



1.1 Background to di�usion through porous media



is the porous medium equation (PME) in1D Cartesian coordinates. It can be generally

stated as
@u
@t

=
@

@x

�
D (u(x(t); t))

@u
@x

�
+ s(x);

whereD(u(x(t); t)) is the di�usion coe�cient (which, when D(u) = um , is the PME).

For radial di�usion, the nonlinear PME is given by

@u
@t

=
1

r d� 1

@
@r

�
um r d� 1 @u

@r

�
+ s(r ); (1)

where d is the number of dimensions. In this study we taked = 2. For both radial

and cartesian coordinates,s(x(t)) and s(r (t)) represent asourceor sink term, such as

ingress of another source of liquid into the system, or evaporation of the liquid out of

the system respectively. In the case of this study, we do not consider any source or

sink terms, particularly since we assume that our migratingliquid is a non reacting,

non volatile liquid.

The transition of transport through porous media is very much dependent on the

saturation level of the solvent. This change in di�usion behavior can be very sharp as

detailed in the study by Lukyanov et al [2]. This transition is seen to occur at about

20% saturation for low saturation levels. The general classi�cation of the "speed"

of non linear di�usion with respect to the value ofm



for slow (m = 1) and superfast (m = � 3=2) di�usion. Where the concentration u(r )

is greater than20%of u(r = 0) , for m = 1, we present a self similar/analytic solution

for u(r (t); t), which is used to obtain the boundary values of the velocity (dr=dt), rate

(@u=@t) and gradient (@u=@r





Figure 3: Structure of capillary areas between sand particles at saturation levels greater than
10%

This paper provided evidence, from an environmental pollution perspective, that small

concentrations of harmful solvents can travel long distances through packed soils/sands

over long periods of time, thus justifying the requirement to investigate the migration

of harmful contaminant species.

The transport of liquid through the porous media was deducedto be due to capillary

action at the surface-roughness scale of the individual particles, and indeed the to-

tal saturation of the sand is the interplay between that within the capillary bridges,

and that in the surface roughness around the particles. Generally, the �ow obeys

a Darcy-like Law, where permeability is related to the geome



following non-dimensionalisation, for saturation, distance and time. When comparing

to equation (1), 
 = m + 1. This is known assuperfast di�usion. In the standard

porous medium equation (which we will use for the slow section of our model), where

m > 1 in equation (3), the low saturation levels at the edge of the liquid delay the

onset of the wetting front, however (and in our model for superfast di�usion), for su-

perfast regimes, the velocity of the wetting front decreases over time as the saturation

level/concentration decreases. The results of the model are in agreement with exper-

iment, and for the characterised system with the organic solvent, trioctyl-phosphate

(TEHP) at low concentration (deposited on well characterised sand) the superfast dif-

fusion regime is said to hold for0:5% < s < 10%. It was also shown that the wetted

volume, V fell on a power law with time, whereV / t0:75 as shown in Figure 4.





occur where the solution value for concentration (or saturation) is 20%of its maximum

value. As expected, the central node will not move, however,the other nodes in the

mesh will move with a velocity that changes with time. This isa �rst attempt at



In Chapter 4 we present the results of the moving mesh methods for both slow and

superfast di�usion in isolation for 2D radial di�usion, followed by the results for the

combined numerical method. In the case of the slow di�usion we show the results for

constant mass between spatial nodes. We discuss the stability and limitations on the

discretisation of time via a Lagrangian type Courant-Friedrichs-Lewy (CFL) condition

[7]. This condition prevents the spatial nodes from overtaking one another.

In Chapter 5 we draw some conclusions from the results, comparing the behaviour of

the slow and superfast regimes in isolation with the combined di�usion moving mesh

scheme.
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2 Generation of an analytic solution for slow di�usion

In this chapter we look for an analytic solution to the porousmedium equation where

m = 1, by generating a self similar solution. We shall �rstly describe the scale in-

variance applied to2D radial di�usion, and follow this with the generation of the self

similar/analytic solution. This method is discussed in reference [8], and adopted in

1D Cartesian coordinates, wherem = 4, in reference [9].

2.1 Scale invariance for slow di�usion

We consider the case wherem = 1 and d = 2 in the nonlinear porous medium equation

(2)
@u
@t

=
1

r d� 1

@
@r

�
r d� 1um @u

@r

�
(2)

where d is the number of dimensions. We now apply a scaling transformation to

equation (2),

u = � 
 û; t = � t̂; r = � � r̂; (3)

using the scaling parameter,� , where� and � are constants. This transforms equation

(2) into the new non-dimensionalised variableŝu, t̂, and r̂ ;

� 


�
@̂u

@̂t
=

� 2




and

u(b) = 0 at the boundary r = b(t):

This results in
@
@t

Z b(t )

0
r d� 1u dr = 0;

and so Z b(t )

0
r d� 1udr = k; (6)

wherek is a constant. Upon transformation of equation (6) intôu, t̂ and r̂ we obtain

� �d � 

Z b(t )

0
r̂ d� 1ûdr̂ = � 0k;

thus generating a second equation in
 and � ,


 + 2� = 0: (7)

Therefore, solving equations (5) and (7)

� =
1
4

; and 
 = �
1
2

:

This results in a scale transformation

u = � � 1
2 û; t = � t̂; and r = �

1
4 r̂;

so

� =
u1=


û1=

=

t

t̂
=

r 1=�

r̂ 1=�
:

An in depth text on scaling methods and self similarity can befound in reference [11].

2.2 Generation of a self similar solution for slow, nonlinear di�usion

We now introduce two variables,� and y, that are independent of� , and which are

invariant under transformation equation (3). We then make� a function of y, and

then transform as follows

� =
u
t 


=
û

t̂ 

;
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y =
r
t �

=
r̂

t̂ �
:

With �



where d is a constant of integration. Therefore

� = A �
y2

8
;

whereA is a constant. We we can write

� = A �
y2

8
;

y2

8
� A:

� =
�

A �
y2

8

�

+

:



Figure 5 illustrates the self similar solution, equation (8), whereA = 2, for the original

non-linear 2D equation (2), whered = 2, m = 1. Four time steps are shown. It can

be seen that the pro�le gradually �attens over time and is symmetric about r = 0. In

this study we take the initial time,



=
�
ru

@u
@r

� r B (t ))

r A (t )

+
�
ur

dr



Algorithm for slow di�usion alone with mass conservation

Initially:

1. De�ne the initial condition everywhere to be

u(r ) = 2 �
r 2

8
at t0 = 1

2. Discretise the meshr i (t) = r0(t) + i � r , where� r are N uniform discretisations

i = 0; 1; : : : ; N , across the domain att0.

3. Calculate the initial masses between nodes using Simpson's Rule bi =
Rr i

r 0
urdr ,

between the origin atr0, and nodesi , for i = 0; : : : ; N .

Then, at each time step,

1. Calculate the velocities from equation (12), approximating the gradient by suit-

able �nite di�erences, for example, central di�erences:

@u
@r

�
�
�
�
i

�
ui +1 (t) � ui � 1(t)
r i +1 (t) � r i � 1(t)

i = 1; : : : ; N � 1:

2. De�ne the velocity of the �nal node at rN through linear extrapolation

vN = 2vN � 1 � vN � 2

or by using the one-sided di�erence

vN � �
uN � uN � 1

rN � rN � 1
:

3. Update the new positions at the next time step using the explicit Euler scheme

r i (t + � t) = r i (t) + � t
dr
dr

�
�
�
�
i

;

for equally spaced time steps� t.

4. Update the solutions at the next time step using the new positions from step 3,

ui (t + � t) =
bi +1 � bi � 1

r i (t + � t) (r i +1 (t + � t) � r i � 1(t + � t))
; for i = 1; : : : ; N � 1:

17



5. Calculateu at the origin by approximating the integral/mass between the origin

and the �rst mesh point at t + � t,

Z r 1 (t+� t )

0
ur dr �

1
4

(u0(t + � t) + u1(t + � t))
�
r1(t + � t)2 � r0(t + � t)2

�
= b1:

The value ofb1 is constant for all time. Therefore

u0(t + � t) =
4b1

r1(t + � t)2
� u1(t + � t)

as r0(t) = 0 8 t.

6. Finally, the value of uN (t + � t) = 1
5u0(t + � t), from the boundary condition at

rN 8 t.

Results are presented in Section 4.1.



At r I , it is assumed that the boundary values are given by the self-similar solution

u(r; t ) = u(0; t)=5. The initial conditions are also taken to be the solutions tothe self

similar solution at r i (t). We start with the initial conditions

uI =
2
5

at t0 = 1

therefore from equation (8)

r0 =
8

p
5

at t0 = 1:

Also, from the self similar solution, substitutingt0 = 1 into the appropriate equations

@u
@t

�
�
�
�
I

=
(r I )2

8
� 1 at t0;

and
@u
@r

�
�
�
�
I

= �
r I

4
at t0:

We can also �nd an expression for the initial velocity of the slow/fast interface, r I (t),

from
du
dt

�
�
�
�
I

=
�

@u
@r

�
�
�
�
I

. dr
dt

�
�
�
�
I

�
+

@u
@t

�
�
�
�
I

:

Since at the interface
du
dt

�
�
�
�
I

= 0 at time t;

then the velocity at the interface node is therefore given by

dr
dt

�
�
�
�
I

= �
@u
@t

�
�
�
�
I

. @u
@r

�
�
�
�
I

=
r I (t)

2t
�

4

r I (t)
p

t
at t: (13)

Due to the �ux into the region at r I (t) (from what is the slow di�usion regime)

ru
@u
@r

+ ru
dr
dt

= 0 at r I (t):

There is an additional boundary condition atrN (t), that maintains/drives migration

19



of the liquid.

ub = 0:01 at rb; t � 0:

The total mass in the fast domain (r I (t); rb(t)



integrals of u from r0(t) to r i (t), where i = I (= 0) ; 1; : : : ; N



at time t, we obtain

dr
dt

�
�
�
�
i

=
�

uI r I

ui r i

�
(1 � � i )

dr
dt

�
�
�
�
I

+
�

(uI )m r I

ui r i

�
(1 � � i )

@u
@r

�
�
�
�
I

� (ui )m� 1 @u
@r

�
�
�
�
i

: (19)

Hence, calculating the velocity of the internal nodes at anytime requires knowledge

of the boundary values atr I , i.e, uI , dr
dt

�
�
I

and @u
@r

�
�
I
, making use of the self similar

solution. Using the previous equation (13), to recap

dr
dt

�
�
�
�
I

=
r I

2t
�

4

r I
p

t
at time t

and from our knowledge at the interface,

@u
@r

�
�
�
�
I

= �
r I

4t
and

@u
@t

�
�
�
�
I

=
(r I )2

8t2
�

1
t3=2

;

we can substitute these into expressions into equation (19)to obtain

dr
dt

�
�
�
�
i

=
�

uI r I

ui r i

�
(1� � i )

�
r I

2t
�

4

r I
p

t

�
+

�
(uI )m r I

ui r i

�
(1� � i )

�
�

r I

4t

�
� (ui )m� 1

�
@u
@r

� �
�
�
�
i

:

This is how the velocity of the spatial nodes,r (t) progress in the superfast di�usion

domain.

We now seek a suitable time-stepping method for the superfast moving mesh method,

and update the position of each spatial noder i by

r i (t + � t) = r i (t) + � t
dr
dt

�
�
�
�
i

;

and the total mass� fast (t + � t) by

� fast (t + � t) = � fast (t) + � t� 0
fast (t);

where � 0
fast (t) is given by equation (15). We have expressions for both@u

@r

�
�
I

and dr
dt

�
�
I

(derived from the self similar solution). So equation (15) becomes

� 0
fast (t) =

�
(r I )2uI

2t

�
(uI )m� 1

2
� 1

��
+

�
4uIp

t

�
: (20)

We can now recover the solution foru(r (t + � t); t + � t) at the next time step, approx-

22



imating equation (16) as

ui (t + � t) = � fast (t + � t)
� i +1 � � i � 1

r i (t + � t) (r i +1 (t + � t) � r i � 1(t + � t))
: (21)

The individual mass fractions (� i ) do not change with time. The self similar solution

is used to calculate values ofu(r; t ) and the velocities of the spatial nodes,vi at time

t = 0, at what would be the boundary with the slow di�usion regime.

In the superfast region we can no longer use the self-similarsolution, and �t a parabola

between the �nal node of the self similar solution/slow parabola, and the �nal node

in the superfast di�usion pro�le, where we have assigned a �nite value of u(N; t ) =

0:01. We give the solution at the �nal node this small value ofu in order to ensure

the advancement of the �uid. In reality, where u(N; t ) = 0 the capillary bridges in

Figure 3 would collapse and no longer exist, and therefore there would be no further



The initial values of ui (t0) in the fast di�usion regime are given by

ui = uN + ( uI � uN )
�

N � r + r I � r i

(N � r )2

�
: (22)

The total mass in the fast region, att0 is therefo



3. De�ne the boundary conditions atr I (t) at time t

uI =
2

p
t

�
r I

8t
; as given by the self similar solution

vI =
r I

2t

�
�
�
I

�
4

r I
p

t
; as given by the self similar solution

4. De�ne the boundary conditions atrb(t)

ub



4. Compute the new total mass fromr I (t+� t) to rN (t+� t) using� 0
fast (t) calculated

from Equation (20), and explicit Euler method.

� fast (t + � t) = � fast (t) + ( � 0
fast (t))� t



The boundary conditions atr0 = 0, t0 = 1 are

u0 = 2;
@u
@r

�
�
�
�
0

= 0;

dr
dt

�
�
�
�
0

= 0;

and for all time t > 0,

@u
@r

�
�
�
�
0

= 0; ; (23)

dr
dt

�
�
�
�
0

= 0; ; (24)

as, intuitively, the origin about which di�usion is symmetric, r0(t)=0.

Let us denote the position and solution at the interface between slow and superfast

di�usion as r I and uI respectively, at t0, where I is the spatial nodal identity. We

know from previous equations (25), (26), (27), and (28) respectively, that at t0 = 1 for

an initial discretisation � r = 1
4
p

5
,

r I =
8

p
5

; (25)

@u
@r

�
�
�
�
I

= �
2

p
5

; (26)

dr
dt

�
�
�
�
I

=
3
p

5
10

; (27)

@u
@t

�
�
�
�
I

=
3
5

: (28)





Therefore, since
dr
dt

�
�
�
�
0

= 0 and
@u
@r

�
�
�
�
0

= 0 at r0(t) = 0

dr
dt

�
�
�
�
i

=
uI r I � i

ui r i

�
@u



r(I) r(I+1)r(I-1)

u(r(I-1),t(n))

u(r(I),t(n))

u(r(I+1),t(n))

SLOW DIFFUSION FAST DIFFUSION

Figure 6: Identi�cation of velocity of interface node between slow andfast di�usion regimes

There will be zero rate of change of mass as mass �ows at the same rate into the

superfast regime as �ows out of the slow regime, by the application of the continuity

equation at the boundary;

d
dt

 
1

� slow(1)

Z r I (t )

r I � 1 (t )
ur dr +

1
� fast (1)

Z r I +1 (t )

r I (t )
ur dr

!

= 0: (31)

where� slow(1) and � fast (1) represent the total mass in the slow and fast regimes respec-

tively at time t0. The integral to the left of the boundary is given by

d
dt

1
� slow(1)

Z r I

r I � 1

ur dr =
1

� slow(1)

 Z r I

r I � 1

@u
@t

r dr +
�
ur

dr
dt

� I

I � 1

!

�
1

(� slow(1) )2

d� slow(1)

dt

Z r I

r I � 1

ur dr; (32)

30



and to the right it is

d

dt
1





where

A =
uI r I

� slow(1)

�
1 � � I � 1 �

(r 2
I � r 2

I � 1)(uI + uI � 1)
4� slow(1)

�

+
um

I r I

� fast (1)

�
(r 2

I +1 � r 2
I )(uI +1 + uI )

4� fast (1)
� � I +1

�

and

B =
uI r I

� slow(1)

�
1 � � I � 1 �

(r 2
I � r 2

I � 1)(uI + uI � 1)
4� slow(1)

�

+
uI r I

� fast (1)

�
(r 2

I +1 � r 2
I )(uI +1 + uI )

4� fast (1)
� � I +1

�

3.7 Combining the initial profile for slow and fast diffusive regimes at

initial time t0.

Now that we have expressions for the velocity of the spatial nodes in the slow diffusion
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Figure 7: Combined slow and fast diffusion profiles at t0.

3.8 Generating an algorithm for the combined diffusion.

We now generate an algorithm to advance the initial profile described in Section (3.7).

Combining slow and superfast di�usion

For a mesh r i , i = 0; : : : ; N ,

0 = r0(t) < r i (t) < : : : < r I < : : : < r N � 1(t) < r N (t)

which is uniform at t0, with N nodes a distance � r apart, rN (t) being a moving

boundary. The interface node, r I (t) is the node at which the slow diffusion regime

changes to the superfast regime.

Initially

1. At t0, and given the boundary condition

uN (t) = 0 :01;

34





2. Calculate the velocity



9. From the boundary condition, the solution for the final spatial node is a constant

uN (t + � t) = 0 :01:

10. Calculate the solution at the origin r0,

u0(t + � t) =
4� slow (t + � t)� 1

(r2(t + � t)2 � u1(t + � t);

as described in Section 3.

11. Calculate the updated solution at the interface,

uI (t + � t) =
u t



4 Results
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the limit of the CFL condition.
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Figure 18. The velocities of the nodes decrease with increasing time, and the velocity-

space-time profile flattens out. This is in keeping with the experimental observations

that as time progresses, the liquid furthest from the origin r0(t) will eventually stop,

when there is no longer any driving pressure from liquid in the capillary bridges. This

can be a long period of time, as described in reference [2].
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on either side of the interface, i.e

@u
@r

�
�
�
�
I

�
uI � uI � 1

r I � r I � 1
on slow diffusion side of interface

and
@u
@r

�
�
�
�

@rI �

u I



5 Discussion and Conclusions

In this section we discuss the implications and conclusions from the results.

This project has looked at the numerical modelling of both slow and superfast diffusion

through a porous medium in a two dimensional radial domain. The method has

considered only non volatile, non reacting species and explicit finite difference schemes

to approximate partial derivatives @u
@r. The project has looked at superfast diffusion

modelled by a moving mesh scheme based on constant mass fractions, where mass

enters the superfast domain from the left hand boundary condition, where a self similar

solution is used in the slow domain to determine the values at the interface.

The moving mesh finite difference method has proved successful in modelling the profile

of concentration of the species against space and time, however with limitations on

the time step, dependent on the CFL condition.

The method for modelling slow diffusion with constant mass over the domain has

proved successful, providing that � t < 0:011 for the specified � r = 1
4
p

5
at t0. This



stringent � t requirement than the simple case of slow diffusion with contant mass.

For stability in this regime, it is required that � t < 5 � 10� 5. This limitation is to

adhere to the CFL condition.

In this method the value of uI (t), at the left hand boundary of the domain, was



6 Recommendations for future work

Throughout the course of this study we have made a number of assumptions, one

of the main ones being that it is possible to model a transition between the porous

medium equation for the slow regime where m = 1 , and for the superfast regime,

where m = � 3=2. This change between m = � 1 and m = � 3=2, is in reality likely to

involve a gradual reduction of m as the saturation level of the solvent/concentration

of the solvent decreases. From a modelling perspective, it may be more realistic to

include a number of interfaces, say i = I 1; I 2; : : : ; I R for R changes in m. As in the

algorithm for the combined diffusion in this study, it may be that a number of interface

nodal velocities then need to be calculated, prior to the velocities of the nodes in the

intermediate positions between the interfaces.

It has been seen throughout the results section, that the use of explicit finite dif-

ference method to approximate velocities vi (t) and solution values uI (t) has resulted

in limitations on the value of the time steps � t that can be used in the numerical

method. It has been shown that a CFL condition must be adhered to, in order to

ensure that "‘node overtaking"’ does not occur, at which point the method will fail.

It is therefore suggested that an implicit method be used for the time stepping in

order to avoid the "‘trial and error"’ method of determining the largest time step

that can be used before node overtaking becomes an issue. Further details of implicit

methods for moving boundaries can be found in reference [12]. This would also allow

us to take a larger, more practical time step, to reduce the computational time that

would be needed for very complex model problems, and avoiding the need to follow

the Lagrangian type CFL condition. In order to smooth out the solution profile at

the interface, and improve accuracy, it may be necessary to reduce/refine the mesh

spacings � r in the region around the interface. Indeed, a further development may be

to investigate a moving mesh finite element method. This is a commonly used method,

particularly for complex geometry systems, and further details can be found in [6], [10]

and [13], where the latter reference includes finite element methods for homogeneous

and inhomogenous solvents in porous materials.

In addition, practically there are a large number of physica



to involve a temperature and pressure dependence). A progression for this study could
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