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Abstract

Let I and J be norm closed inner ideals of a JB*-triple. The main theorem

of the thesis states that I and J are equal precisely when @e(I
⁄
1 ) = @e(J

⁄
1 ).

Moreover, we prove that I ‰ J exactly when @e(I
⁄
1 ) ‰ @e(J

⁄
1 ). Thus, JB*-

triple inner ideals are determined by extreme dual ball points.

The tool used to reach this conclusion is what we term the Inner Stone-

Weierstrass Theorem for JB*-triples; we show that for norm closed inner

ideals I and J of a JB*-triple, where I ‰ J , we may conclude that I = J if

@e(I
⁄
1 ) = @e(J

⁄
1 ). Our excuse for this terminology is that the equality of the

extreme dual ball points implies a Stone-Weierstrass separation condition,

that is, that I separates @e(J
⁄
1 ) [ f0g.

To create this tool, we first exploit structure space techniques to make a
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Introduction

Historically, JB*-triples originate in the study of an algebraic characterisation

of bounded symmetric domains in complex Banach spaces [Kaup]. Examples

of JB*-triples include C*-algebras and JB*-algebras.

Given a norm closed inner ideal I of a JB*-triple A, it is well-known that each

functional in @e(I
⁄
1 ) has a unique extension to a functional in the dual ball

of A, and that in fact this extension is an extreme point. In addition, there

is a bijective correspondence between @e(A
⁄
1) and the minimal tripotents of

A⁄⁄ [FrRu4]. Therefore, by identifying each functional ‰ 2 @e(I
⁄
1 ) with its

extension, we may write

@e(A
⁄
1) =

[
@e(I

⁄
1 );

as the union ranges over all norm closed inner ideals I of A.

The purpose of this thesis is to investigate to what extent the inner ideal

structure of a JB*-triple is determined by these extreme functionals. We

show that two norm closed inner ideals I and J of a JB*-triple A are equal

precisely when @e(I
⁄
1 ) = @e(J

⁄
1 ), and furthermore, that I ‰ J if and only if

@e(I
⁄
1 ) ‰ @e(J

⁄
1 ).

Predominantly, however, the thesis is concerned with deriving the tool used



Essentially, the route we take to prove the Inner Stone-Weierstrass Theorem

is to progressively establish the analogous result for various triple structures;

for C*-algebras and universally reversible JC*-algebras in Chapter Four, and

then for JC*-triples and JB*-triples in Chapter Five, with each stage intrin-

sically reliant upon the preceding one. A pivotal step, and one of possible

independent interest, is the formation of a particular composition series that

allows the extension of the universally reversible JC*-algebra version to its

JC*-triple counterpart. Thus, we prove:

If A be a JC*-triple such that all Cartan factor representations of A have

rank greater than two, then A has a composition series of norm closed ideals

(J‚)0•‚•fi such that J‚+1=J‚, is isomorphic to an inner ideal in a universally

reversible JC*-algebra.

It should be understood that the opening two chapters comprise of well-

known material, presented to support subsequent chapters. The emphasis

here is on clarity and brevity. In Chapter One we supply the principal back-

ground to Jordan algebras, whereas Chapter Two details JB*-triples. We

include known results relating to the focus of the thesis, that is JB*-triple in-

ner ideals, alongside some original, wholly technical lemmas regarding these

structures. Given our choice of terminology, we state brief details of the

Stone-Weierstrass Theorem and its many generalisations.

The third chapter marks the beginning of the main body of original work.

In essence, our aim is to undertake the groundwork required for what fol-

lows, focussing upon certain aspects of inner ideals in JW*-triples. In par-

ticular, by making extensive use of Horn’s decomposition theory, [Ho2], we
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demonstrate a strong correspondence between the underlying generic type of

homogenous JW*-triples and that of their weak* closed inner ideals. In this

endeavour we also exploit the powerful notion of the centroid of a JB*-triple

[DinTi][EdRü9].

Moving on, we investigate the inner ideal structure of universally reversible

JW*-algebras. Our starting point is the work of [EdRüVa2]. For contin-

uous JW*-algebras, or those isomorphic to von Neumann algebras, M say,

the authors proved that each inner ideal is of the form eM`(e), where `

is the canonical involution of the enveloping von Neumann algebra. It was

our intention to form a definitive resolution using this template, however our

extension is valid only for those algebras without symplectic part. Although

this exception to some extent impedes our work, the restricted resolution is

sufficient for the needs of the thesis.

In Chapter Four we prove the Inner Stone-Weierstrass Theorem for univer-

sally reversible JC*-algebras:

If A is a universally reversible JC*-algebra with norm closed inner ideals I

and J , with I contained in J and such that @e(I
⁄
1 ) = @e(J

⁄
1 ), then I = J .

We begin with a series of technicalities regarding the atomic part of a JB*-

triple, that are used extensively throughout. We show that if A is a JB*-triple

with a norm closed inner ideal I, then if @e(I
⁄
1 ) = @e(A

⁄
1) we can conclude

that I⁄⁄ and A⁄⁄ have equal atomic part, denoted by A⁄⁄
at . Furthermore, we

prove that I⁄⁄
at = A⁄⁄

at precisely when I separates @e(A
⁄
1) [ f0g. The latter is

a Stone-Weierstrass separation condition. Thus our choice of nomenclature.
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Chapter 1

Preliminaries of Jordan Algebras

1.1 Introduction

In this chapter we lay out the principal preliminaries on Jordan algebras



Particular attention is paid to the concepts of type I decomposition and factor

representations. These are recurrent themes within the thesis and therefore

merit a clear treatment. In a similar vein we highlight the notions of universal

reversibility and the universal enveloping C⁄-algebra.

We conclude by introducing JB*-algebras, a key part of what follows. Here

a brief definition will suffice since, for the most part, necessary remarks can

be derived from our exposition of JB-algebras.

We use standard notation, thus given a Banach space X, X⁄ denotes the

dual space. We will habitually regard X as being contained in the second

dual via the canonical embedding. In the same way, X⁄ is contained in X⁄⁄⁄.

The transpose of the embedding X 7! X⁄⁄ is the weak* continuous map

P : X⁄⁄⁄ ! X⁄, (‰ ! ‰jX∗ ). If X is the dual of some Banach space Y then

this map is P : Y ⁄⁄ ! Y , the weak* continuous projection.

We shall make frequent and tacit use of the following well-known result. Let

X and E be Banach spaces, where E is the dual of some Banach space Y .

Let … : X ! E be a bounded linear map such that …(X) is weak* dense in

E. Then there is a unique weak* continuous extension, …̂ : X⁄⁄ ! E, and,

moreover, …̂(X⁄⁄) = E.

Finally, as is usual, we will use N; R and C to denote the natural, real and

complex numbers, and H and O to denote the quaternions and the octonions

respectively.
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1.2 Jordan Algebras

We now describe a specific class of algebras, namely Jordan algebras.

1.2.1 Let A be an algebra over the field F = R or C, with product

– : A £ A ! A

denoted by a – b, for a; b 2 A. A is said to be a Jordan algebra if it satisfies

the following two properties:

(i) a – b = b – a for all a; b 2 A.

(ii) (a – b) – a2 = a – (b – a2) for all a; b 2 A.

1.2.2 Let A be an associative algebra. A new product, –, called the special

Jordan product, on A is defined by

a – b =
1

2
(ab + ba);

where ab denotes the usual product. The product – is bilinear and commu-

tative. Let AJ denote the algebra A endowed with this product –. Under the

special Jordan product the conditions (1.2.1(i)) and (1.2.1(ii)) given earlier

hold, so that AJ is a Jordan algebra. A special Jordan algebra is a Jordan

algebra that is isomorphic to a subalgebra of AJ , for some associative algebra

A.

1.2.3 There exist Jordan algebras which are not special, i.e. that are not

Jordan subalgebras of associative algebras with the special Jordan product.

These are called exceptional Jordan algebras. A classical example is the 27

dimensional octonionic real Jordan algebra M3(O)sa, which we will denote

by N8
3 .
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1.2.4 We now define two fundamental operators on Jordan algebras. Let A

be a Jordan algebra. For all elements a of A define the



1.3.2 A JB-algebra is a real Jordan algebra A with a norm k:k such that

(J1) k



1.4.1 A Jordan algebra A is said to be associative or abelian if A = Z(A).

Let X be a locally compact Hausdorff space. Then the self adjoint part

of C0(X) is an associative JC-algebra under pointwise multiplication and

supremum norm. Conversely we have the following.

Theorem 1.4.2 ([AlShSt, 2.3])

Let A be an associative JB-algebra. Then there exists a locally compact Haus-

dorff space X such that A is isometrically isomorphic to (C0(X))sa.

Moreover A is unital if and only if X is compact.

1.4.3 Let A be a JB-algebra with a1; :::; an 2 A and let C(a1:::an) denote

the JB-subalgebra of A generated by a1; :::; an. Then if a1; :::; an operator

commute C(a1:::an) is abelian and hence is isometric to the self adjoint part

of some abelian C*-algebra. In particular, via C*-algebra theory, for any

a 2 A we have the following isometric isomorphism

C0(¾(a)) »= C(a)

f 7! f(a);

where ¾(a) = f‚ 2 R : a ¡ ‚1 is not invertible in C(1; a)g. Here, if A is

non-unital 1 is the identity element of the unitisation of A. Note that in

Jordan algebra terms a is said to be invertible with inverse b if a – b = 1 and

a2 – b = a – b.

1.4.4 Let A be a JB-algebra and let a 2 A. Then a is said to be positive



1.5 States

1.5.1 Let A be a JB-algebra. A functional ‰ 2 A⁄ is positive if ‰(a) ‚ 0 for

all a 2 A+. In which case we write ‰ ‚ 0.

The set of quasi states of A,

Q(A) = f‰ 2 A⁄ : ‰ ‚ 0; k‰k • 1g;

is weak* compact and convex. The set of states of A is the convex set

S(A) = f‰ 2 A⁄ : ‰ ‚ 0; k‰k = 1g:

The non-zero extreme points of Q(A) are states of A called the pure states

of A, the set of which is denoted by P (A). Furthermore, if A has an identity

element, denoted by 1, then

S(A) = f‰ 2 A⁄ : ‰(1) = k‰k = 1g

and is weak* compact as well as being convex. Consequently, in that case

we have P (A) = @e(S(A)), that is, the set of extreme points of S(A).

1.6 JW-Algebras and JBW-Algebras

It is natural to consider a subclass of JB-algebras which are in some sense

the Jordan analogue of W⁄-algebras. We begin with the concrete version,

JW-algebras.

1.6.1 Let H be a complex Hilbert space and consider B(H) as a von Neu-

mann algebra with the weak topology. A real Jordan subalgebra M of B(H)sa

is said to be a JW-algebra if it is a weakly closed.

7



1.6.2 Before we can formally define JBW-algebras we need a few preliminary

definitions. Let M be a JB-algebra. Then M is said to be monotone complete

if each bounded increasing net (x‚) in M has least upper bound x in M . A

bounded linear functional ‰ of M is said to be normal if for every such net

(x‚) we have ‰(x‚) ¡! ‰(x). A set of functionals Γ is said to be separating if

for any non-zero x in M there exists a functional ‰ in Γ such that ‰(x) 6= 0.

1.6.3 A JB-algebra M is said to be a JBW-algebra if it is monotone complete

with a separating set of positive normal bounded linear functionals. In line

with Sakai’s definition of a W*-algebra, there is an alternative and more

elegant definition.

Theorem 1.6.4 ([Sh1, Theorem 2.3])

Let M be a JB-algebra. Then M is a JBW-algebra if and only if M is a

Banach dual space.

In this case the predual is unique and consists of the normal linear functionals

on M. It is denoted by M⁄.

1.6.5 Every JW-algebra is a JBW-algebra. All JBW-algebras are unital

[HaSt, 4.1.7].

1.6.6 The normal states of a JBW-algebra M are the weak* continuous

linear functionals ‰ on M satisfying ‰(1) = k‰k = 1, where 1 denotes the

unit of M .

1.6.7 The relationship between JB-algebras and JBW-algebras, mimicing

that of C*-algebras and W*-algebras, is a powerful tool. Its strength is par-

ticularly evident when any JB-algebra is viewed, via the canonical injection,

as a subset of its second dual. This is demonstrated by the next theorem.

8



Theorem 1.6.8 ([Sh1] [HaSt, 4.4.3, 4.7.5])

Let A be a JB-algebra. Then

(a) A⁄⁄ is a JBW-algebra;

(b) the product of A⁄⁄ extends the usual product on A and is separately

weak⁄ continuous;

(c) the weak* continuous extension of each state of A to A⁄⁄ is normal;

(d) A⁄⁄ is the monotone completion of A, i.e. A⁄⁄ is the smallest monotone

closed subalgebra of A⁄⁄ containing A;

(e) if A is a JC-algebra then A⁄⁄ is a JW-algebra;

(f) if A is a JBW-algebra and a JC-algebra then it is a JW-algebra.

In this manner it is common to regard a JB-algebra A as a subalgebra of A⁄⁄

and to identify states of A with normal states of its bidual.

9



1.7 Projections

1.7.1 Let M be a JBW-algebra. The idempotents of M are called projec-

tions. Given an element a in M let W (a) denote the weak* closure of C(a).

Then W (a) is an abelian JBW-algebra with a unit, denoted by r(a) and

which is called the range projection of a in M [AlShSt] [HaSt, 4.1.10, 4.2.6].

The JBW-algebra W (a), is isometrically isomorphic to the self adjoint part

of a W*-algebra. Thus, M is amply endowed with projections. Through the

order structure inherited from M , the set of all projections in M is a com-

plete lattice and the set of all central projections is a complete sublattice.

For each projection e of M , c(e) denotes the least central projection of M

majorising e, termed the central support of M .

1.7.2 If e is a projection in the JBW-algebra M then Ue(M) is a JBW-

subalgebra of M with unit e. Moreover, as e ranges over all projections, the

Ue(M) are precisely the weak* closed quadratic ideals of M [Ed, 2.3]. The

weak* closed ideals of M are of the form z–M , where z is a central projection

[HaSt, 4.3.6]. In particular, c(e)–M is the weak* closed ideal of M generated

by a projection e.

A non-zero projection e of M is said to be minimal if it does not majorise

any other non-zero projection. Thus, e is a minimal projection in M if and

only if Ue(M) = Re. M is said to be a factor if Z(M) = R1. Thus, M is a

factor if and only if it has no non-trivial central projections.

10



1.7.3 Let ‰ be a normal state on a JBW-algebra M . The support of ‰,

denoted by s(‰), is defined to be the least projection e of M such that

‰(e) = 1, whereas the central support of ‰, c(‰), is the least central projection

z such that ‰(z) = 1. We have c(‰) = c(s(‰)).

When A is a JB-algebra and ‰ is a state of A, and therefore a normal state of

A⁄⁄, by s(‰) and c(‰) we mean the support and central support, respectively,

in A⁄⁄.

1.7.4 Using [AlSh1, 1.13], [AlSh2] and [AlShSt], the map ‰ 7! s(‰) describes

a bijection from the set of pure normal states of a JBW-algebra M to the

set of minimal projections of M . The inverse map is given for a minimal

projection e, by e 7! ‰e, where ‰e(x)e = fexeg for all x in M . In terms of a

JB-algebra A, this translates to a bijection between the set of pure states of

A and set of minimal projections of A⁄⁄.

1.8 Type Decomposition of a JBW-Algebra

1.8.1 The notion of type classification in JB-algebras and JBW-algebras is,

in essence, a translation of the respective concepts for C*-algebras and W*-

algebras. As a type I W*-algebra is not necessarily type I as a C*-algebra,

it is the convention to use the term postliminal to refer to those C*-algebras

originally classed as type I. In consequence, the concept of postliminality is

also used for JB-algebras. For details regarding postliminal JB-algebras see

section (1.11).

Our particular interest is the type decomposition of JBW-algebras (actually

JBW*-algebras), a characterisation in terms of abelian projections, mimicing

that for W*-algebras. Such a decomposition will be invaluable in our later

work.
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Recall that a projection e in a JBW-algebra M is said to be abelian if Ue(M)

is an abelian JBW-algebra.

1.8.2 Let M be a JBW-algebra. Then M is said to be

(i) type I if there exists an abelian projection p in M with c(p) = 1;

(ii) continuous if M has no non-zero abelian projections.

Furthermore, M is said to be type In, where n < 1, if there exist n abelian

projections p1; ::; pn in M with c(p1) = ::: = c(pn) = 1 and
P

pi = 1. We

define M to be type I finite if it is an ‘1-sum of such type In JBW-algebras.

If M is type I without type I finite part then it is said to be of type I1.

1.8.3 Let e be a minimal projection in a JBW-algebra M . Then c(e) – M ,

the weak* closed ideal generated by e, is a type I factor, N say. The norm

closed ideal in N , and hence in M , generated by its minimal projections is

called the elementary ideal of N and is denoted by K(N). Further details of

type I factors are provided in sections (1.12) and (1.13).

1.8.4 Let p and q be projections in JBW-algebra M . Then p and q are said

to be exchanged by a symmetry, denoted by p »
1

q, if p = Us(q) for some

symmetry s in M .

We note the following technical result, of use in Chapters Three and Four.

Lemma 1.8.5 ([HaSt, 5.3.2])

Let M be a JBW-algebra with projections p and q. Then

(a) if p is abelian and q • p then q = c(q)p;

(b) if p and q are abelian with c(p)=c(q) then p »
1

q;

(c) if M is type I then there exists an abelian projection r in M such that

r • q and c(q)=c(r).

12



In particular, it follows from (a) that in a JBW-factor every abelian projec-

tion is minimal.

1.8.6 Projections p and q in a JBW-algebra are said to be equivalent, denoted

by p » q, if there exists a finite sequence s1; :::; sn of symmetries such that

q = Us1 :::Usn(p). If p » q then c(p) = c(q).

Theorem 1.8.7 ([Top1, Theorem 9])

Let M be a type I finite JBW-algebra. Then

(a) if (ei)and (fi)



1.10 Exceptional Decomposition

A JB-algebra A is said to be purely exceptional if every factor representation

is onto the exceptional JB-algebra N8
3 .



Proposition 1.11.3 ([Bu2, 3.9])

Let A be a JB-algebra. Then there exists a Jordan ideal J of A such that

(a) J is postliminal;

(b) A/J is antiliminal.

1.11.4 A composition series of JB-algebra A is a strictly increasing family

of closed ideals (I‚), indexed by an ordinal segment [0, fi ], such that

(i) I0 = 0 and Ifi = A;

(ii) for each limit ordinal °

I° =
[

‚<°

I‚;

where bar denotes norm closure;

(iii) each successive quotient is of the form I‚+1=I‚.

This definition is a similar to that for C*-algebras, with Jordan ideals replac-

ing ideals. We note the following result, which is a Jordan analogue to that

in [Kap] [Ped1, 6.2.6].

Theorem 1.11.5 ([Bu1, 2.3.2])

Let A be a JB-algebra. Then the following are e-23eΩuivalent.



1.12 Spin Factors

Lemma 1.12.1 ([HaSt, 6.1.3])

Let H be a real Hilbert space of dimension at least two. Let A = H 'R1 with

norm and product defined by:

ka + ‚1k = kak2 + j‚j

(a + ‚1) – (b + „1) = („a + ‚b) + (ha; bi + ‚„)1 for all a; b 2 H ‚; „ 2 R:

Then A is a JW-algebra factor.

1.12.2 The JW-algebras that occur in the above lemma are the



1.13 The Universal Enveloping C*-Algebra

1.13.1 Throughout the thesis, by an involution on a C*-algebra we shall

always mean a *-antiautomorphism of order two. Let B be a C*-algebra

with involution fi. We will habitually use the notation Bfi to denote the set

of points of B fixed by fi.

The following structure is crucial to our later results, particularly to those in

Chapters Three and Four. For further details refer to [HaSt, x7]. Throughout

this section let A be a JC-algebra.

1.13.2 A universal enveloping C*-algebra of A is a pair (C⁄(A); ˆ), where

C⁄(A) is a C*-algebra and ˆ is an injective Jordan homomorphism

ˆ : A ¡! C⁄(A)sa

such that

(i) C⁄(A) is the C*-algebra generated by ˆ(A);

(ii) A has the universal extension property. That is, each Jordan homomor-

phism … : ˆ(A) ! Csa, where C is any C*-algebra, extends uniquely

to a *-homomorphism …̂ : C⁄(A) ! C.

1.13.3





Proposition 1.13.6 ([Han2, §2])

(a) Let A be a JC-algebra. Then the following are equivalent.

(i) A is universally reversible.

(ii) A = C⁄(A)`
sa.

(iii) A has no spin factor representations other than those onto U2 or

U3.

(b) Let M be a JW-algebra. Then the following are equivalent.

(i) M is universally reversible.

(ii) M = W ⁄(M)`
sa.

(iii) The type I2 part of M is isomorphic to C(X; U2)'C(Y; U3), where

X and Y are compact hyperstonean spaces.

1.13.7 Let H be a complex Hilbert space and let v : H ! H be a conjugate

linear isometry. Define an involution fi : B(H) ! B(H) by x 7! vx⁄v⁄. Evi-

dently fi is of order two if and only if v2 = ‚1 for some ‚ 2 C with j‚j = 1.

Since v commutes with v2 we see that v commutes with ‚. In which case, as

v is conjugate linear, ‚ is real. It follows that v2 = §1.

Such an involution fi is said to be a real flip if v2 = 1, or a quaternionic flip

if v2 = ¡1. A conjugate linear isometry v is called a conjugation if v2 = 1

and a unit quaternion if v2 = ¡1.

Suppose that fi is a real flip. Then Hv = fh2‚ ff(H) byŒ1.95 Tf 8.91 2.95 TD[TJ/F4 11.95 Tf2311.97 10.72 08 TD[())]TJ/F10 11107TfTf 1 4.3 TD[(˘)]TJ/F3 11.95J/F.5H)v =Œ



On the other hand, suppose that fi is a quaternionic flip. Let k = iv so that

f1; i; v; kg generate the quaternions. To form a quaternionic Hilbert space

HH define a quaternionic inner product, denoted by < :; : >H,

< a; b >H= Re < a; b > ¡iRe < ia; b > ¡vRe < va; b > ¡kRe < ka; b >

for all a; b 2 H. It is apparent that any element x in B(H) satisfies fi(x) = x⁄

if and only if vx = xv and kx = xk. Thus elements of B(H)fi
sa are self adjoint

H¡linear operators, that is, B(H)fi
sa

»= B(HH)sa.

This discussion forms the basis of the next theorem.

Theorem 1.13.8 ([AlHaSh, 3.1])

Let M be a universally reversible JW-algebra factor of type In (2 • n • 1).

Then there exists a complex Hilbert space H such that M is isomorphic to

one of the following.

(a) B(H)fi
sa

»= B(HR)sa, where fi is a real flip on B(H) and HR is a real

Hilbert space.

(b) B(H)sa.

(c) B(H)fl
sa

»= B(HH)sa, where fl is a quaternionic flip on B(H) and HH

is a quaternionic Hilbert space.

1.13.9 A non-abelian type I JW-algebra factor M is said to be real, complex

or quaternionic if M is isomorphic to B(K)sa where K is a real, complex



1.14 JB*-Algebras and JC*-Algebras

Finally we describe the algebraic complexification of JB-algebras and JC-

algebras, namely JB*-algebras and JC*-algebras.

1.14.1 A JB*-algebra, originally termed a Jordan C*-algebra, is a complex

Banach space A which is a complex Jordan algebra with involution * and

that satisfies the following conditions.

(JB1) kx – yk • kxkkyk for all x; y 2 A.

(JB2) kx⁄k = kxk for all x 2 A.

(JB3) kUx(x⁄)k = kxk3 for all x 2 A.



Chapter 2

Preliminaries of Jordan Triple Systems

2.1 Introduction

Taking a similar role to Chapter One, this chapter presents the principal

background to Jordan triple systems. Material has been selected from a

wide variety of literature, perhaps the most consistently used of which are

[FrRu4] and [FrRu5], with the intention to support later work by providing

relevant information in a clear and concise manner.

We start by describing general Jordan triple systems, before moving on to

define JB⁄-triples. We naturally include a summary of well-known results

pertaining to the focus of the thesis, that is the inner ideals of JB*-triples. In

particular, we present carefully chosen results from the wide ranging work of

Edwards and Ruttimann [EdRü1]-[EdRü8]. We also establish some technical

lemmas regarding inner ideals, which do not warrant deep examination, but

which are required in subsequent chapters.

The notion of type decomposition, specifically that provided by Horn [Ho2],

dominates later work, and is therefore given a thorough exposition here. We

go on to give details of atomic decomposition, and of Friedman and Russo’s

Gelfand Naimark Theorem for JB*-triples. To conclude, we supply a succinct

presentation of the Stone-Weierstrass Theorem and its many generalisations.
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2.2 Jordan *-Triple Systems over C

2.2.1 A Jordan *-triple system over C is a complex vector space A with a

triple product A £ A £ A ! A, denoted by (a; b; c) 7¡! fabcg, such that

(i) f:::g is linear in a and c, conjugate linear in b;

(ii) fabcg = fcbag for all a; b; c 2 A;

(iii) fabfxyzgg = ffabxgyzg + fxyfabzgg ¡ fxfbaygzg.

The identity (iii) is often known as the main identity.

Henceforth, by a Jordan *-triple system we shall mean a Jordan *-triple

system over C.

2.2.2 Let A be a Jordan triple system. Then a subspace B of A is said to

be a subtriple if fBBBg ‰ B. A subspace I of A is said to be an ideal if

fAAIg + fAIAg ‰ I, and an inner ideal if fIAIg ‰ I.

2.2.3 For a pair of elements x and y in a Jordan triple A define a linear

operator on A by D(x; y)(z) = fxyzg, and a conjugate linear operator on A

by Q(x)(z) = fxzxg. Using the commutator notation, [X; Y ] = XY ¡ Y X,

we can rewrite the main identity (iii) as follows.

(iii)0 [D(a; b); D(x; y)] = D(fabxg; y) ¡ D(x; fbayg).
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2.2.4 We state a series of well-known identities satisfied by a Jordan triple

system. (P1-P3) are referred to as polarisation identities.

(I) fybfxaxgg = 2ffybxgaxg ¡ fxfbyagxg.

(II) fxafxbxgg = fxfaxbgxg = ffxaxgbxg.

(III) fyafxaxgg = fyfaxagxg.

(IV) ffxaxgbfxaxgg = fxfafxbxgagxg.

(V) ffxaxgafxaygg = fxaffxaxgaygg.

(VI) 2fyafxazgg = fyfaxagzg + fyfazagxg.

(P1) 4fxyzg =
P3

0 ikfx + iky x + iky zg.

(P2) 4fzxzg =
P3

0(¡1)kfx + ikz x + ikz x + ikzg.

(P3) 2fxyzg = fx + z y x + zg ¡ fxyxg ¡ fzyzg.

2.2.5 Let A be a Jordan *-triple system. An element e in A is said to be a

tripotent if e = feeeg. For such a tripotent e, let D = D(e; e) and Q = Q(e).

We have th-349(tr75(ha)26(v)27(e)-32661)]TJ/F3 11.9GTf 11.75 0 T6g1



The associated Peirce projections P0; P1 and P2 are defined as follows.

P2 = Q2 = D(2D ¡ I)

P1 = 2(D ¡ Q2) = 4D(I ¡ D)

P0 = I ¡ 2D + Q2 = (I ¡ D)(I ¡ 2D):

The Peirce projections are mutually orthogonal linear projections on A with

P0 + P1 + P2 = I. Thus, A = P0(A) ' P1(A) ' P2(A). Furthermore, since

(D ¡ I)P2 = (D ¡ I

2
)P1 = (D ¡ 0)P0 = 0;

it follows that Pi(A) = ker(D ¡ iI
2

), for i = 0; 1; 2. That is, for each

i 2 f0; 1; 2g the Peirce i-space is the i
2
-eigenspace of D.

2.2.6 Let A be a Jordan *-triple system and let Ai = Pi(A), for i = 0; 1; 2.

The following rules, often called Peirce rules, hold.

(i) fAiAjAkg ‰ Ai¡j+k if i ¡ j + k 2 f0; 1; 2g.

(ii) fAiAjAkg = 0 if i ¡ j + k =2 f0; 1; 2g.

(iii) fAA2A0g = fAA0A2g = 0.

Each Ai (i=0, 1, 2) is a subtriple of A, and A0 and A2 are inner ideals of A.

When it is necessary to emphasise which tripotent e is being considered we

will use the notations Pi = P e
i and Ai = Ai(e).
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2.3 Jordan *-Triple Systems and Jordan * Algebras

2.3.1 Let A be a Jordan *-triple system and let a 2 A. Then we can define

an algebra, denoted by A(a) and called the a-homotope of A, by defining a

product x – y = fxayg, for all x and y in A. Using the symmetric property

of the triple product and identity (V), we have that, for all x; y 2 A,

x – y = y – x;

x2 – (x – y) = ffxaxgafxaygg = fxaffxaxgaygg = x – (x2 – y):

Hence A(a) is a complex Jordan algebra.

More specifically, the following proposition demonstrates that if we take a

tripotent e in A then the triple system is locally a complex Jordan * algebra,

in the sense that the Peirce 2-space A2(e) is a complex Jordan * algebra.

Proposition 2.3.2

Let A be a Jordan *-triple system. Let e be a tripotent in A. Then A2(e) is

a complex Jordan * algebra with identity e, and with product and involution

given by: x – y = fxeyg, x# = fexeg.

On the other hand, every complex Jordan * algebra is a Jordan triple system

with triple product given by

fxyzg = (x – y⁄) – z + x – (y⁄ – z) ¡ (x – z) – y⁄: (2.1)
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2.4 Ordering the Tripotents of a Triple System

2.4.1 Let e and f be two tripotents of a Jordan triple system A. Then e

and f are said to be orthogonal, denoted e ? f



2.5 JB*-Triples and JBW*-Triples

We now introduce the structure within which our work is set, that is, the

JB*-triple, a category which includes C*-algebras and JB*-algebras.

2.5.1 A JB*-triple is a complex Banach space A which is a Jordan *-triple

system such that for all a in A

(i) kfaaagk = kak3;

(ii) D(a,a) is an hermitian operator on A with non-negative spectrum.

Naturally every norm closed subtriple of a JB*-triple is itself a JB*-triple.

2.5.2 A JBW*-triple is a JB*-triple M with a Banach space predual, denoted

by M⁄. This predual is necessarily unique and the triple product on M is

separately ¾(M ,M⁄) continuous [BaTi, 2.1]. It follows that a weak* closed



By polarisation, it follows that if … : A ¡! B is a linear map such that

…(fxxxg) = f…(x)…(x)…(x)g for all x in A, then … is a triple homomorphism.

Triple isomorphisms between JB*-triples correspond precisely to surjective

linear isometries.

Theorem 2.6.2 ([Kaup, 5.5][Ho1, 2.4])

Let A and B be JB*-triples and let … : A ¡! B. Then … is a surjective linear

isometry if and only if … is a triple isomorphism.



2.8 Tripotents in JB*-Triples

2.8.1 Let e be a non-zero tripotent in a JB*-triple A. Then e is said to be:-

(i) minimal if A2(e) = Ce;

(ii) complete, if A0(e) = f0g;

(iii) unitary if A2(e) = A;

(iv) abelian if A2(e) is an associative JB*-algebra (hence, an abelian C*-

algebra).



Theorem 2.8.5 ([FrRu4, Proposition 4])

Let M be a JBW*-triple. There is a bijective correspondence between the

elements of @e(M⁄;1) and the minimal tripotents of M given by ‰ 7! s(‰)



2.9.4 One result of the preceding discussion is that if M is a JBW*-triple

with x 2 M , and Mx denotes the JBW*-subtriple of M generated by x, then

Mx is an abelian W*-subalgebra of M2(r(x)). In particular, x 2 M2(r(x))+.

Since there exists a complete tripotent in M majorising r(x), [Ho1, 3.12], we

have the following.

Lemma 2.9.5

If x 2 M , where M is a JBW*-triple, then x 2 M2(u)+ for some complete

tripotent u of M .

2.10 Norm Closed Inner Ideals, Ideals and Quotients

Crucially, JB*-triples are stable under appropriate quotients.

Theorem 2.10.1 ([Kaup, p523][FrRu5, p146])

Let A be a JB*-triple with norm closed ideal J. In the quotient norm A=J is

(a) a JB*-triple; (b) a JC*-triple if A is a JC*-triple.

We remark that (2.10.1(b)) anticipates the Gelfand-Naimark Theorem dis-

cussed in (2.12).

2.10.2 Norm closed inner ideals and norm closed ideals in JB*-triples have

geometric characterisations. In the following, (a) was obtained in [EdRü4]

and (b) in [BaTi].
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Theorem 2.10.3

Let A be a JB*-triple.

(a) A JB*-subtriple I of A is an inner ideal of A if and only if each ‰ 2 I⁄

has unique norm preserving extension in A⁄.

(b) A norm closed subspace J of A is an ideal of A if and only if J is an

M-ideal of A.

2.10.4 Let A be a JB*-triple. Elements a and b in A satisfy D(a; b) = 0 if

and only if D(b; a) = 0 [EdRü6, 3.1]. In which case, a and b are said to be

orthogonal, written a ? b. For any subset B of A, the annihilator B? of B

in A, which is defined to be the set

B? = fa 2 A : a ? b for all b 2 Bg;

is a norm closed inner ideal of A [EdRü6, 3.2]; it is weak* closed if A is a

JBW*-triple.

2.10.5 For norm closed ideals in JB*-triples, the defining algebraic condition

can be relaxed. In fact, (see [BuCh], [DinTi], [Har2]), a norm closed subspace

I of A is an ideal of A if and only if it satisfies any one of the following

equivalent conditions:

(i) fAAIg ‰ I ; (ii) fAIAg ‰ I ; (iii) fAIIg ‰ I:

2.10.6 Let I and J be norm closed ideals of a JB*-triple A. By definition,

fIAI?g ‰ I \ I? = f0g. Via this remark, the previous paragraph and the

fundamental identity, we see that

fAIfAI?I?gg ‰ ffAIAgI?I?g + fAfIAI2



I and J are said to be orthogonal if D(a; b) = 0 for all a 2 I and b 2 J . By

functional calculus, if x 2 I \J then x = fyyyg for some y 2 I \J . It follows

that fAI J



In the above context, J? is often referred to as the complementary ideal of

the weak* closed ideal J of M . Also, we shall see, (2.10.21), that part (c)

generalises to any weak* closed ideal in a JBW*-triple.

2.10.9 Let A be a JB*-triple, let J be a norm closed ideal of A and let I

be a norm closed inner ideal of A. Every minimal tripotent of the weak*

closed inner ideal I⁄⁄ of A⁄⁄ is again minimal in A⁄⁄. The corresponding

statement is true for the weak* closed ideal J⁄⁄ of A⁄⁄. On the other hand,

by (2.10.8(d)), a minimal tripotent of A⁄⁄ lies in J⁄⁄ or in its complementary

ideal. These remarks, together with (2.8.5), have the following consequences.

(a) Each ‰ 2 @e(I
⁄
1 ) has a unique extension in @e(A

⁄
1).

(b) Each of the following maps is a bijection.

(i) f‰ 2 @e(A
⁄
1) : s(‰) 2 I⁄⁄g ! @e(I

⁄
1 ) (‰ 7! ‰jI ).

(ii) f‰ 2 @e(A
⁄
1) : ‰(J) 6= 0g ! @e(J

⁄
1 ) (‰ 7! ‰jJ ).

(iii) f‰ 2 @e(A
⁄
1) : ‰(J) = 0g ! @e((A=J)⁄

1) (‰ 7! ‰), where ‰ denotes

the functional given by ‰(x + J) = ‰(x), whenever ‰ lies in the

stated domain.

When confusion seems unlikely we will tend to identify the respective domain

and codomain in the correspondences (i),(ii), and (iii). It is in this sense that

we write

@e(A
⁄
1) =

[
@e(I

⁄
1 );

where the union ranges over all norm closed inner ideals I of A.
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2.10.10 Let B be a subtriple of a JBW*-triple M . Then B is said to be

complemented in M if M = B ' KerB [LoNe], where

KerB = fa 2 M : fBaBg = 0g:

A projection P : M ! M is said to be a structural projection if

PfaP (b)ag = fP (a)bP (a)g

for all a; b 2 M .

These notions of complementation and structural projections were introduced

into JBW*-triples, and JB*-triples, by Edwards and Rüttimann [EdRü7]

with significant effect.

Theorem 2.10.11 ([EdRü7, 4.5, 4.8] [EdMcRü, 5.5, 5.6])

Let M be a JBW*-triple. Then

(a) all structural projections on M are contractive and weak* continuous;

(b) a subtriple of M is complemented if and only if it is a weak* closed

inner ideal;

(c) the map, P 7! P (M), is a bijection from the set of structural projections

of M onto the set of weak* closed inner ideals of M .

If J is a weak* closed ideal of a JBW*-triple M , so that M =M5 0 TD[(ont1a31.9TJ/F8 11.95 79(oje)50(ceoje)50(ceoj9(on1.95 Tf 12.57 0 Tceo(oje)r4(]TJ/F3 c3t57 0 TceoP(5 0 TD[(on74(2.1f 6)7(t)-3te)49(d)-3492 9.17 0 TD[(()]Teea0 Tced)]TJ/F3 c3t57 0lJ/F3 c3t57 0lJ/F3 c3t57 0lJ/F3 c3t57 0lJ/)-3492 9.17 0 TD[u7t57 7 0lJ/F3 c3t579c0.)]TJ/F3 11.95 Tfje)50(79c0.)]TJ/F3 11.95 Tfje)50(79c0.)]TJ/F3 11.95 Tfjec3e.



2.10.12 Edwards’ and Rüttimann’s description of the weak* closed inner

ideals of a W*-algebra will prove to be vital. We let CP(W ) denote the set

of pairs of centrally equivalent projections of a W*-algebra W .

Theorem 2.10.13 ([EdRü1, 4.1])

Let W be a W*-algebra. Then the map (e; f) 7! eWf , is an order preserving

bijection from CP(W ) onto the set of weak* closed inner ideals of W .

The norm closed inner ideals of a C*-algebra are precisely the intersections

of closed left and right ideals [EdRü3, 2.6]. A similar result holds the weak*

closed inner ideals of W*-algebras [EdRü1, 3.16].

2.10.14 We end this section with a few technical lemmas regarding triple

ideals and inner ideals that are required in subsequent chapters.

Lemma 2.10.15

Let M be a JBW*-triple. Let I be a weak* closed inner ideal of M and let

J be a weak* closed ideal of M. Let P : M ¡! J be the natural projection.

Then

(a) I = I \ J ' I \ J?;

(b) I \ J? = (I \ J)? \ I;

(c) P (I) = I \ J .

Proof

(a) Let x 2 I. Then, by functional calculus, x = fyyyg for some y 2 I.

Using the ideal decomposition of M , there exists a 2 J and b 2 J?

such that y = a + b. Thus

x = fyyyg = fyayg + fybyg 2 I \ J ' I \ J?:

The converse is clear.
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(b) Since I\J is a weak* closed ideal of I we see that I = I\J'(I\J)?\I.

Comparison with (a) gives the result.

(c) As P is the identity on J and vanishes on J? we have

P (I \ J) = I \ J and P (I \ J?) = 0:

The conclusion now follows via part (a). 2

Lemma 2.10.16

Let M be a JBW*-triple. Let (Jfi) be a family of weak* closed ideals of M

such that M is the ‘1-sum,
P

Jfi. If I is a weak* closed inner ideal of M

then I =
PPn1







Proof

By the main identity

fJAKg = fJAfKKKgg = ffJAKgKKg + fKKfJAKgg ¡ fKfAJKgKg

= 2ffJAKgKKg ‰ fIKKg ‰ K:

Similarly fJAKg ‰ J so that fJAKg ‰ J \ K = 0. Finally, by (2.10.20),

T (J) \ T (K) = 0 and so T (J) ? T (K).

The remaining statement follows from the separate weak* continuity of the

triple product. 2

2.11 Types of JBW*-Triples

2.11.1 The type classification of a JBW*-triple is a natural, though not

obvious, analogue of that of a JBW*-algebra. Details of the latter can be

found in [HaSt]. The study of type I JBW*-triples was initiated in [Ho1] and

subsequently pursued in considerable detail in [Ho2] and [Ho3]. The structure

of continuous JBW*-triples was investigated to resolution in [HoNe].

2.11.2 Let M be a JBW*-triple. Then M is said to be a type I JBW*-triple

if every weak* closed ideal of M contains an abelian tripotent. Equivalently,

M is type I if it contains a complete tripotent e such that M2(e) is a type I

JBW*-algebra [Ho1, 4.14]. M is said to be type I1 if and only if it contains



A finer type II and type III classification of continuous JBW*-triples is also

given in [HoNe].

2.11.3 A JBW*-triple M is said to be a factor if it contains no non-trivial

weak* closed ideals. The type I factors are precisely those that contain a

minimal tripotent and, by [Ho2, 1.8], they are the Cartan factors, briefly

described in the following.

It what follows we let H and K be complex Hilbert spaces of respective

orthonormal dimensions n and m, where n and m are, possibly infinite,

cardinals. Let j : H ¡! H be a conjugation.

(a) Rectangular, Rn;m: M = B(H; K). If n • m, realising H as a closed

subspace of K, let p be the orthogonal projection onto H. Then

M = B(pK; K) »= B(K)p

and, taking any involution, ˆ : B(K) ! B(K), we also have that

M »= ˆ(p)B(K) »= B(K; ˆ(p)K) »= B(K; H). Thus Rm;n
»= Rn;m,

and the rectangular Cartan factors are the weak* closed left (or right)

ideals of type I von Neumann factors. In the special case of n = 1, then

M = K and the triple product can be realised as follows.

fxyzg =
1

2

¡
< x; y > z+ < z; y > x

¢

If 1 • n; m < 1, then M = Mn;m(C).

(b) Hermitian, Sn(C) : M = fx 2 B(H) : x = jx⁄jg.

The map fi : B(H) ! B(H) given by x 7! jx⁄j is a real flip, (see

(1.13.7)), giving M = B(H)fi, a JW*-algebra factor of type I. Moreover,

if 1 • n < 1 then M is isomorphic to the n £ n symmetric matrices

(hence, the notation Sn(C)).
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(c) Symplectic, An(C) (2 • n • 1): M = fx 2 B(H) : x = ¡jx⁄jg.

If n is even and finite, or is infinite, then there is a unit quaternion

v : B(H) ! B(H), (see(1.13.7)), and the induced map fl given by

fl(x) = ¡vx⁄v, (fl : B(H) ! B(H)), is a quaternionic flip. In which

case, M »= B(H)fl, via x 7! ¡vjx, again a JW*-algebra factor of type

I. When 2 • n < 1, M is identified with the n £ n antisymmetric

matrices.

(d) Complex spin factors: M = V‚ = U‚ ' iU‚, the complexification of the

real spin factor U‚ defined in (1.12). Henceforth, we refer to the V‚ as

the spin factors and the U‚ as the real spin factors.

The previous four kinds of Cartan factors are JC*-triples with the following

overlappings: M1;3(C) »= A3(C), S2(C) »= V2, M2(C) »= V3, A4(C) »= V5 and

M1(C) »= S1(C) »= A2





As ‰ ranges over @e(M⁄;1), let Mat denote the ‘1-sum of the distinct C‰’s

that arise. Then Mat is the smallest weak* closed ideal of M containing all

minimal tripotents of M , whereas M?
at contains no minimal tripotents. Mat

is called the



2.12 Atomic and Cartan Factor Representations

2.12.1 Let A be a JB*-triple. By a Cartan factor representation of A we

mean a (triple) homomorphism, … : A ! M , where M is a Cartan factor and

…(A) is weak* dense in M . The rank of such a Cartan factor representation

is defined to be the rank of M .

2.12.2 Given ‰ 2 @e(A
⁄
1), where A is a JB*-triple, let C‰ be the weak*

closed Cartan factor ideal of A⁄⁄ generated by s(‰), (see (2.11.6)), and let

P‰ : A⁄⁄ ! C‰ be the natural projection. Let …‰ : A ! C‰



Correspondingly, the restriction to A is the map

…at =
X

…‰ : A !
‡ X

C‰

·
1

(a 7!
X

…‰(a));

called the atomic representation of A. If a 2 A with …at(a) = 0 then, by

these remarks, ¿(a) = 0 for all ¿ 2 @e(A



2.13 The Stone-Weierstrass Theorem

2.13.1 The Stone-Weierstrass Theorem, a generalisation of the Weierstrass

approximation Theorem, was proved by M.H. Stone in 1937. It is the driving

force behind much of the thesis. We state a non-unital version.

Theorem 2.13.2 (Stone-Weierstrass)

Let X be a locally compact Hausdorff space and let A be a closed subalgebra

of C0(X) such that

(a) for each x in X there exists f 2 A such that f(x) 6= 0;

(b) A separates the points of X;

(c) if f 2 A then f̄ 2 A.

Then A = C0(X).

2.13.3 In the context of C*-algebras a more elegant statement is possible.

Let A be a commutative C*-algebra. Then the Gelfand map is an isometric

*-isomorphism of A onto C0(P (A)), where P (A) is given the weak* topology.

Conversely, via the usual evaluation map, every locally compact Hausdorff

space X can be identified with P (C0(X)). This leads to the following refor-

mulation of (2.13.2).

Theorem 2.13.4

Let A be a commutative C*-algebra. Let B be a C*-subalgebra of A such that

B separates the points of P (A) [ f0g. Then B = A.

2.13.5 At the time of writing, the extension of (2.13.4) to all C*-algebras, the

Stone-Weierstrass Conjecture, remains an open problem. Progress has been

made towards generalising (2.13.4), for instance, by weakening the constraint

of commutativity, (Kaplansky successfully proved the result for postiliminal
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C*-algebras [Kap]), or by enlarging of the set of functionals under consider-

ation.

2.13.6 As JB*-triples and JB*-algebras are generalisations of C*-algebras, it

is natural to consider a meaningful version of the Stone-Weierstrass Theorem

for these structures. Due to the lack of positivity and thus of pure states in

JB*-triples, pure states are replaced by the extreme points of the dual ball.

Subtriples take the role given to subalgebras. In this way, the JB*-triple

version of the Stone-Weierstrass conjecture is as follows.

Conjecture 2.13.7

Let A be a JB*-triple and let I be a subtriple of A such that I separates

@e(A
⁄
1) [ f0g. Then A=I.

The JB*-triple counterpart of (2.13.4) has been shown to hold [FrRu3, 3.4].

Sheppard has obtained extensions of the Stone-Weierstrass Theorem, in par-

ticular, to postliminal JB-algebras and postliminal JB*-triples [Shep2, 4.11],

[Shep3, 5.5]. We also note the following, which we use later.





An attempt is then made to describe the weak* inner ideals of particular

JW*-triples, namely universally reversible JW*-algebras. Our motivation is

the role these structures occupy in many of the arguments of the next chap-

ter. Initially, our intention was to extend [EdRüVa2] to formulate a general

resolution, that is, to prove that every weak* inner ideal of a universally

reversible JW*-algebra M has a unique representation in the form eM`(e),

where e is a projection in W ⁄(M) with `-invariant central support. This

proved not to be possible, the symplectic part forming an obstacle. So the

restriction is made that M has no non-zero symplectic part. This is sufficient

for our subsequent needs.

Finally, an account of Cartan factor representation theory is offered, as this

represents a vital tool in what follows.

3.2 The Centroid of a JB*-Triple

3.2.1 Let A be a JB*-triple. The centroid of A is the set of T 2 B(A)

satisfying T (fa b cg) = fTa b cg for all a; b; c 2 A, and will be denoted

by Ce(A). Equivalently, for T 2 B(A), the condition that T 2 Ce(A) is

characterised, separately, by each of the following conditions.

(i)T (fa b cg) = fa b Tcg; (ii)TD(a; b) = D(a; b)T ; (iii)TD(a; a) = D(a; a)T:

The centroid of a JB*-triple was introduced and studied in [DinTi] and de-

veloped further in [EdRü9] and [EdLoRü].
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3.2.2



Proof

(a) We have



Proof (of (a))

Let T; S 2 Ce(M). The restriction of T to the inner ideal M2(u) lies in the

centroid of the JBW*-algebra M2(u), so that T (u) 2 Z(M2(u)) by the result

of [DinTi] mentioned in (3.2.4). Furthermore,

ST (u) = STfu u ug = fS(u) u T (u)g = S(u) – T (u);

and T #(u) = T #fu u ug = fu T (u) ug = (T (u))⁄. Therefore, ˆ is a *-

homomorphism.=– T (



Proof

Let S 2 Ce(M). Then, by (3.2.6), there exists a unique a 2 Z(M2(u)) such

that S(u) = a. Since P u
0 = I ¡ 2D(u; u) + P u

2 = 0, for each x 2 M we have

x = 2fuuxg ¡ P u
2 (x), so that

S(x) = 2fS(u) u xg ¡ S(P u
2 (x)) = 2D(a; u)(x) ¡ D(a; u)P u

2 (x)



3.2.9 Consider a JBW*-triple M = A›C, where A is an abelian von Neu-

mann algebra and C is a Cartan factor. Let u be a complete tripotent of C.

Then 1 › u is a complete tripotent of M and we have

M2(1 › u) = A›C2(u):

Since C2(u) is a type I JBW-algebra factor, it follows that

Z(M2(1 › u)) = A › u:

Let T 2 Ce(M



3.3 The Type of an Inner Ideal

3.3.1 In this section, in tensor product notation of the form A›C, the left

hand side will always represent an abelian von Neumann algebra. Recall

Horn’s type I structure theorem [Ho2, 1.7].

Theorem 3.3.2

If M is a type I JBW*-triple then M »=
‡ P

Ai›Ci

·
1

, for (up to isomor-

phism) distinct Cartan factors Ci. Moreover such a decomposition is unique.

3.3.3 The uniqueness above is not stated in [Ho2] but is implicit and can be

seen as follows. Suppose there is a surjective linear isometry

… :
‡ X

Ai›Ci

·
1

!
‡ X

Bj›Dj

·
1

;

where the Ci are distinct (up to isomorphism) Cartan factors, and similarly

for the Dj. Fix i0. By (3.2.10(b)) there exist projections zj 2 Bj such

that …(Ai0›Ci0) =
P

zjBj›Dj. Pick a j0 such that zj0 6= 0. Thus, again

by (3.2.10(b)), there is a non-zero weak* closed ideal J of Ai0 such that

…(J›Ci0) = zj0Bj0›Dj0 , so that Ci0
»= Dj0 , by [Ho3, x4]. By the uniqueness

of the Dj’s, this implies that zj = 0 for all j 6= j0. Thus,

…(Ai0›Ci0) = zj0Bj0›Dj0 ;

giving,
‡ P

i6=i0
Ai›Ci

·
1

»=
‡ P

j 6=j0
Bj›Dj

·
1

+(1¡zj0)Bj0›Dj0 . Now, the

above argument, starting with the j0-summand on the right, contradicts the

uniqueness of the Ci if zjo 6= 1. That is, there is a unique j0 such that

…(Ai0›Ci0) = Bj0›Dj0 ;

in which case Ai0
»= Bj0 , by takj0A



3.3.4 We remark that up to (Jordan) *-isomorphism there is one and only

one

(a) exceptional JBW*-algebra factor;

(b) spin factor of given dimension ‚ (possibly infinite);

(c) type In JW*-algebra factor of given Cartan type and rank n, where n



Otherwise, C and D are JW*-algebras and …2 extends to a *-isomorphism

…̂2 : W ⁄(C) ! W ⁄(D) (of W*-algebras). This induces a *-isomorphism

between von Neumann algebras [KaRi2],

…1›…̂2 : A›W ⁄(C) ! B›W ⁄(D);

which, by restriction, sends A›C onto B›D.

The general case is now immediate from the homogeneous decomposition of

type I JBW*-algebras together with (3.3.3). 2

Lemma 3.3.6

Let M be a JBW*-triple with complete tripotent u. Suppose that, for ideals

Ii of M2(u), M2(u) is the ‘1-sum
P

Ii. Put u =
P

ui, where ui 2 Ii, for

each i and let Ji = T w(Ii), for each i. Then

(a) M =
¡ P

Ji

¢
1;

(b) M2(u) =
P

(Ji)2(ui) and each ui is a complete tripotent of Ji.

Proof

(a) This is immediate from (2.10.8(c)).

(b) For each i, ui is the identity element of Ii (regarded as a JBW*-algebra)

and (Ji)2(ui) = (Ii)2(ui) = Ii, by (2.10.8(b)). 2
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3.3.7 From this point on we concentrate on JW*-triples of type I. Let M

be a JW*-triple with complete tripotent u such that M2(u) »= A›C, where

C is a (special) Cartan factor; thus C is isomorphic to a type I JW*-algebra

factor. As C varies, the possiblities for M , up to isomorphism, are as set out

in the table below. Here n represents a cardinal number, possibly infinite,

and we mean ‘1-sum. We make tacit use of (3.2.10(c)) throughout.

C M

[Ho2; 4:1] Vn (n 6= 3; 5) A›Vn

[Ho2; 5:5] Rn;n

P
Am›R:5] Vn

:5] Vn



Since the complete tripotent u was unspecified, it follows from the table that

M2(u) »= M2(v) for any other complete tripotent v of M . Since 1 › w is

a complete tripotent of A›C, whenever w is a complete tripotent of C, we

therefore have M2(u) »= A›C2(w), for every complete tripotent w of C.

Proposition 3.3.10

Let M be a type I JW*-triple. Let u and v be complete tripotents of M . Then

M2(u) »= M2(v).

Proof

We have M =
¡ P

Ji

¢
1, where each Ji

»= Ai › Ci for a certain abelian von

Neumann algebras Ai and Cartan factors Ci. We also have u =
P

ui and

v =
P

vi, where ui and vi are complete tripotents of Ji, for each i. By (3.3.9),

(Ji)2(ui) »= (Ji)2(vi), for each i. Therefore,

M2(u) =
X

(Ji)2(ui) »=
X

(Ji)2(vi) = M2(v): 2

3.3.11 Let M be a Cartan factor with a tripotent u. Then we say that u

is of rank n if M2(u) is of rank n. Let C be an hermitian, a rectangular or

symplectic Cartan factor of rank at least two. Let u be a complete tripotent

of C of rank two. The structure of C2(u) relative to the type of C is as

follows.

C : hermitian; rectangular; symplectic.(cf(cf2(uiii2



Lemma 3.3.12

Let M be a JW*-triple such that M = A›C, where A is an abelian von



3.3.13 We now show that the ”generic type” of a type I JW*-triple (mostly)

determines, and is determined by, that of a weak* closed inner ideal.

Theorem 3.3.14

Let M be a JW*-triple such that M »= A›C, where A is an abelian von

Neumann algebra and C is a Cartan factor of rank at least two. Let I be a

weak* closed inner ideal of M such that I has no type I1 part. Then M is

hermitian (respectively rectangular, symplectic) if and only if I is hermitian

(respectively rectangular, symplectic).

Proof

We have I =
¡ P

Ii

¢
1, where, for each i, Ii

»= Ai›Ci, with each Ai an abelian

von Neumann algebra and Ci a Cartan factor of rank at least two. For each

i choose a tripotent ui 2 Ii such that (Ii)2(ui) is type I2. We have that

M2(ui) = (Ii)2(ui) is type I2 for each i. By definition I is hermitian if and

only if C is hermitian. Thus, the above equality, together with (3.3.12(a)),

implies that M is hermitian if and only if I is hermitian. The remaining

claims, those in parenthesis, are obtained in the same way using (3.3.12(b)

and (c)). 2

Corollary 3.3.15

Let I be a weak* closed inner ideal in a type I JW*-triple M such that neither

I nor M have type I1 part. If M is hermitian (respectively rectangular,

symplectic) then I is hermitian (respectively rectangular, symplectic). The

converse is true if I generates M as a weak* closed ideal.

Proof

Now, M is the ‘1-sum
P

Ji, where, for each i,



If M is hermitian then each of the Ji is hermitian. In which case, each non-

zero Ji \ I is hermitian by (3.3.14), implying that I is hermitian.

Conversely, suppose that I is hermitian and generates M as a weak* closed

ideal. By (2.10.16), the latter condition implies that Ji \ I is non-zero for all

i. Now (3.3.14) implies that each Ji, and therefore M , is hermitian.

Directly similar arguments, through (3.3.14), give the remaining cases. 2

3.3.16 We now turn to type I1 JW*-triples, first recalling some particular

features of type I rectangular JW*-triples.

(a) Let W be a von Neumann algebra with partial isometry u and let

l = uu⁄ and r = u⁄u so that W2(u) = lWr. We have lu = u = ur and



Proposition 3.3.17

The following are equivalent for a JBW*-triple M .

(a) M is type I1.

(b) M »= We, for some abelian projection e



To conclude this section, we present the following two results, of use in the

next chapter.

Proposition 3.3.19

Let M be a JBW*-algebra with complete tripotent u such that M2(u) is iso-

morphic to a W*-algebra of type I. Then M is isomorphic to a W*-algebra

of type I.

Proof

By definition (see [Ho2, x5]) M is a type I rectangular JBW*-algebra. So,

M »= We for some type I W*-algebra W and projection e in W (3.3.16(c)).

Since M is a JBW*-algebra, We has a unitary tripotent v, giving

We = vv⁄Wev⁄v = vv⁄Wv⁄v »



Lemma 3.3.20





3.4.4 Given a universally reversible JW*-algebra M and a projection e 2 M ,

the canonical involution ` of W ⁄(M) restricts to an involution on eW ⁄(M)e,

with (eW ⁄(M)e)` = eMe. Thus, it is necessary, generally, to consider in-

volutions other than the possible canonical ones. It is convenient to make

the following definition. A JW*-algebra will said to be complex if it is *-

isomorphic to a von Neumann algebra.

3.4.5 Let fi be an involution on a von Neumann algebra W . Then fi is

said to be central if it fixes each point of Z(W ), and is said to be split if

1 = z+fi(z) for some non-trivial central projection z in Z(W ). The properties

of fi are intimately connected to those of the JW*-algebra of fi-fixed points,

W fi = fx 2 W : fi(x) = xg. One elementary observation is that if e is a

projection of W fi, then fi is an involution on eWe with (eWe)fi = eW fie.

Another is as follows.

Lemma 3.4.6

Let fi be a central involution on a von Neumann algebra W and let e be a

projection in W fi. Then fi is central on eWe.

Proof

This is immediate, since Z(eWe) = eZ(W ) = eZ(W fi) = Z(eW fie). 2

Now, as an involution fi on a von Neumann algebra W restricts to an in-

volution on Z(W ), the following is immediate from [HaSt, 7.3.4 , 7.3.5] and

(3.4.6).

Lemma 3.4.7

Let fi be an involution on a von Neumann algebra W . Then fi is either

central, split or there is a non-trivial projection z 2 Z(W fi) such that fi is

central on Wz and split on W (1 ¡ z).
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Lemma 3.4.8

Let fi be an involution on a von Neumann algebra W and let e be a projection

in W . Then fi(c(e)) = c(fi(e)).

Proof

Since e • c(e), fi(e) • fi(c(e)) and so c(fi(e)) • fi(c(e)). Through this prin-

ciple, c(e) = c(fi(fi(e))) • fi(c(fi(e))), giving fi(c(e)) • c(fi(e)) and hence

equality. 2

We next state two key results of G̊asemyr [G̊a]. The first is [G̊a, 2.2(a), 2.8].

Theorem 3.4.9

Let fi be an involution on a von Neumann algebra W . Then

(a) the type I2 part of W fi is *-isomorphic to (A1›V2)'(A2›V3)'(A3›V5),

where A1, A2 and A3 are abelian von Neumann algebras;

(b) if W fi has no abelian part, then it generates W .

3.4.10 As a JW*-algebra is universally reversible precisely if its type I2 part

is *-isomorphic to (A1 › V2) ' (A2 › V3), where A1 and A2 are abelian von

Neumann algebras (1.13.6), the next proposition is immediate from [G̊a,

2.2(b)].

Proposition 3.4.11

Let fi be an involution on a von Neumann algebra W such that W fi is

universally reversible without abelian part. Then there is a *-isomorphism

° : W ! W ⁄(W fi) such that fi = °¡1`°, where ` is the canonical involution

on W fi.

The next two results are complementary.
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Lemma 3.4.12

Let fi be an involution on a von Neumann algebra W . We have

(a) if fi is split then W fi is complex;

(b) if W fi is complex and has no abelian part then fi is split.

Proof

(a) Let z be a non-trivial projection in Z(W ) such that fi(z) = 1 ¡ z, and

consider the map … : Wz ! W fi given by …(x) = x + fi(x). Since

Wz and fi(Wz) = (1 ¡ z)W are orthogonal, a straightforward check

shows that … is an injective Jordan *-homomorphism. Moreover, given

a 2 W fi we have that a = az + a(1 ¡ z) = …(az). So … is surjective.

(b) Suppose that the stated conditions hold. By [HaSt, 7.4.7] the canonical

involution ` on W fi is split. Also, (3.4.11) implies that fi = °¡1`° for

some *-isomorphism ° : W ! W ⁄(W fi). Therefore, fi is split. 2

Lemma 3.4.13

Let fi be an involution on a von Neumann algebra W . We have

(a) fi is not central if and only if there exists a non-trivial projection z in

Z(W ) such that zfi(z) = 0;

(b) if W fi has no complex part, then fi is central;

(c) if fi is central and W fi is complex, then W fi is abelian;

(d) if W fi has no abelian part and fi is central, then W fi has no complex

part.
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Proof

(a) If fi is not central then by (3.4.7) there is a non-trival projection p in

Z(W fi) such that fi is split on Wp, from which the required conclusion

follows by definition. The converse is immediate from the definition.

(b) If fi is not central, we can choose a non-trivial projection z 2 Z(W )

such that zfi(z) = 0 by part (a). Then Wz »= (z + fi(z))W fi, by the

proof (3.4.12(a)).

(c) Since fi is invariant on the complement of the abelian part of W , this

is immediate from (3.4.12(b)).

(d) Suppose that W fiz is complex for some unique projection z in W fi. If

fi is central and W fi has no abelian part then, applying (3.4.12(b)) to

fi on Wz, we conclude that z = 0. 2

3.4.14 Let A be an abelian von Neumann algebra. Consider M = A›B(H)fi,

where fi is a real quaternionic flip and where dim(H) ‚ 3. The von Neumann

algebra generated by M is W = A›B(H), and ` = id›fi is an involution on

W such that M = W `. By (3.4.11), we may suppose that W = W ⁄(M) and

that ` is the canonical involution. If fi is a real flip the dimension condition

can be relaxed to dim(H) ‚ 2.

Let e be an abelian projection in M . Then c(e) 2 Z(M) = A › 1, so that

c(e) = z ›1, for some z 2 A. Let f be a minimal projection in B(H)fi. Then

z › f is abelian in M and c(z › f) = z › 1 = c(e). Therefore, by (1.8.5(b)),

there is a symmetry s in M such that ses = z › f .

(a) If fi is a real flip, then f is minimal in B(H) [Shep1, 3.2.3(i)]. Therefore,

e = s(z › f)s is abelian in W ⁄(M). Since ` is a central involution, it

follows that eW ⁄(M)e = Z(eW ⁄(M)e) = Z(eMe) = eMe.
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(b) Let fi be a quaternionic flip. Then f = p + `(p), for some minimal

projection p in B(H) [Shep1, 3.2.3(iii)]. Thus, with q = z › p, we have

that q is abelian in W ⁄(M) and also that ses = q + `(q).

Summing over homogeneous parts, we conclude:

Lemma 3.4.15

Let M be a universally reversible type I JW*-algebra and let e be an abelian

projection in M . We have

(a) if M is hermitian then e is abelian in W ⁄(M) and eMe = eW ⁄(M)e;

(b) if M is symplectic then e = p + `(p), where p is an abelian projection

of W ⁄(M) and ` is the canonical involution.

Proposition 3.4.16

Let M be a universally reversible JW*-algebra with no complex part. Let ` be

the canonical involution on W ⁄(M). Suppose that M has non-zero symplectic

type I part. Then there exists a non-zero projection e in W ⁄(M) such that

(a) e is abelian in W ⁄(M);

(b) e + `(e) is abelian in M ;

(c) eM`(e) = 0.

Proof

Let N be the symplectic type I part of M . By (3.4.15(b)) we can choose a

non-zero projection e in W ⁄(N) such that e is abelian in W ⁄(N) and e+`(e)

is abelian in N . Then, since W ⁄(N) is an ideal of W ⁄(M), this projection e

is abelian in W ⁄(M) and e + `(e) is abelian in M .
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To affirm part (c) we observe that, by (3.4.13(b)), ` is central and so

(e + `(e))M(e + `(e)) = Z
¡
(e + `(e))M(e + `(e))

¢
= (e + `(e))Z(M)

= (e + `(e))Z(W ⁄(M)):

Therefore, as e`(e) = 0,

eM`(e) = e
¡
(e + `(e))M(e + `(e))

¢
`(e) = e(e + `(e))`(e)Z(W ⁄(M)) = 0:2

Proposition 3.4.17

Let M be a universally reversible JW*-algebra with no complex part. Let e be

a non-zero projection in W ⁄(M) such that eM`(e) = 0. Then

(a) eW ⁄(M)e »= (e + `(e))M(e + `(e));

(b) e is abelian in W ⁄(M) and e + `(e) is abelian in M ;

(c) Mc(e) is type I symplectic;

where ` is the canonical involution on



Secondly, we claim that N` »= eN . This follows, through the proof of

(3.4.12(a)), after we note that

e(exe + `(e)y`(e)) = exe = (exe + `(e)y`(e))e:

Now, through the two preceding statements, we can confirm that

eW ⁄(M)e = eN »= N



Let f = e + `(e). Clearly fz is an abelian projection in Mc(e). How-

ever, fz cannot be abelian in W ⁄(M)c(e). Indeed, since zfW ⁄(M)f is

a weak* closed ideal of fW ⁄(M)f , which is a type I2 W*-algebra, and

as

zfW ⁄(M)f = fzW ⁄(M)c(e)fz;

it follows that fzW ⁄(M)c(e)fz is of type I2. Thus, in the light of

(3.4.15(a)), the projection fz provides a contradiction and so the her-

mitian part of Mc(e) is zero. Finally as, by assumption, M has no

complex part, Mc(e) must be symplectic. 2

Now (3.4.16) together with (3.4.17) gives the following.

Theorem 3.4.18

Let M be a universally reversible JW*-algebra with no complex part. Then

there exists a non-zero projection e in W ⁄(M) such that eM`(e) = 0 if and

only if M has non-zero symplectic type I part.

Such a projection e satisfies the following, where ` is the canonical involution.

(a) eW ⁄(M)e »= (e + `(e))M(e + `(e)).

(b) (e + `(e))W ⁄(M)(e + `(e)) »= A › M2(C), for some abelian von Neu-

mann algebra A.

(c) Mc(e) is symplectic type I.

We note the following corollary.

Corollary 3.4.19

Let M be any JW*-algebra without symplectic part or complex part. Then

every complete tripotent of M is unitary.
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Proof

Let u be a complete tripotent of M . Then

(1 ¡ uu⁄)M(1 ¡ u⁄u) = M0(u) = f0g:

Put e = (1 ¡ uu⁄). Then `(e) = 1 ¡ u⁄u, where ` is the canonical involution

on W ⁄(M), and hence eM`(e) = 0. Now, by hypothesis and (3.4.18), e = 0

and thus `(e) = 0. So, uu⁄ = 1 = u⁄u. 2

Lemma 3.4.20

Let u be an abelian tripotent in an hermitian JW*-algebra M . Then u is an

abelian tripotent of W ⁄(M) and M2(u) = W ⁄(M)2(u).

Proof

We may suppose that M ab11.95 Tf 153 0 TD[(W)]Tgeneou 0 TD[(us)]T4ceu Λ(M), and(u)9432/F4 11.95 5 Tf 10.58 0 TD[(is)-303750/F4 11.95=f 137.83 0 TD[(M)]TJ/F4 11.95f 11.32 -1.79 TD[(2)]TJ/F381.95 Tf 4.73 1.79 TD[(()]4J/F811.95 Tf 4.55 0 TD[(u)]TJ/F3 11.95 vf 6.66 0 TD[())]TJ08=W⁄(M), and(u)

Lem1ma 3.4.T/F1011.95 Tf 30.88 -132.07 T71J09(4 15/F7 3.4.T6(y)(t)-326(of)]TJ/F4Tf 48.5 0 TD[(`57li3 11.95 Tf 10.56 0 TD[(b)-27(3(an)]TJ 5 Tf 22.71 0 TD[(M)]TJ/93 11.95 vf 6.66 0 TD[())]27(F4 11.95in)-344(ar)49(a)B*-6(t)lTf 67.2 0 TD[(eM)-(LeTJ/F4 11.Af 12.57 0 TD[(),)-388=)]TJ/Fare)-344(saidr)49(ator)49(a-327(comf 4.55 0 TD[(.)]T74)]J/F4 11.rigidr)ripl-26(66(cof)]T28(f)]line.95 Trf 12.57 0 TD[(),1.98li3 0(elian)-34iTf 100.84 0 TD[(W)]T.72/F4 11.Af 12.5 -1.79 TD[8(1)]F3 11.95 Tf 4.73 1.79 TD[(()]TJ/F4 11.95 Tf 4.55 0 TD[(u)]TJ/F3 11.95 Tf 6.66 0 TD[())-278(=)]TJ/F4 1 28.29 0 TD[(§8(0)]TJ -3‰f 120 0 TD[(M)]TJ/F.62/F4 11.Af 12.5 -1.79 TD[8(7)]F3 11.95 1f 4.73 1.79 TD[(()]TJ/F4 11.95 Tf 4.55 0 TD[(u)]TJ/F3 11.95 vf 6.66 0 TD[())]TJ09(and)-332mplete) Tf 22.71 0 TD[(M)]31.2/F4 11.Af 12.5 -1.79 TD[8(1)]F3 11.95 Tf 4.73 1.79 TD[(()]TJ/F4 11.95 Tf 4.55 0 TD[(u)]TJ/F3 11.95 vf 6.66 0 TD[())]TJ09(and)-332m 28.29 0 TD[(§8(0)]TJ -3‰f 120 0 TD[(M)]TJ/F.61/F4 11.Af 12.5 -1.79 TD[8(1)]F3 11.95 1f 4.73 1.79 TD[(()]TJ/F4 11.95 Tf 4.55 0 TD[(u)]TJ/F3 11.95 Tf 6.66 0 TD[())-278(=)]TJ/F4 .f -379.5 -35.23 TD180.62/a)-372(3.4.20)]TJ ET BT/F10211.95 Tf 30.88 -236.61 TD[(L)505J7815J/F4 11.95 Tf 20.1 0 TD[(u)]TJ/F070 11.95 Tf 10.77 0 TD[(is)-3435anM



that v = ev + v`(e), giving f = ef + v`(e)v⁄. In particular, ef = fe. Let

p = (1 ¡ e)f . Since, by assumption, M2(v) ‰ M1(u), we deduce that

pM`(p) = (1 ¡ e)(fM`(f))`(1 ¡ e) ‰ (1 ¡ e)(M1(u))`(1 ¡ e) = f0g:

Therefore, because (3.4.18) now shows that p = 0, f = ef . Similarly,

e = fe = f . Hence, 0 = v`(e)v⁄ = v`(f)v⁄ = vv⁄ = f . Thus, v = 0 and

likewise u = 0; a contradiction. 2

Proposition 3.4.23

Let I be a weak* closed inner ideal of an hermitian JW*-algebra M . Then

there is a unitary tripotent u of I such that I = M2(u). Putting e = uu⁄

(in W ⁄(M)), we have I = eM`(e), where ` is the canonical involution of

W ⁄(M). Moreover, if I is type I1 then it is abelian.

Proof

Pick a complete tripotent u of I. If I has no type I1 part then the first part

of the statement is immediate from (3.3.15) and (3.4.19).

On the other hand, suppose that I is type I1. If I is not abelian then, passing

to a weak* closed ideal, in order to obtain a contradiction we may suppose

that I »= A › H, where A is an abelian von Neumann algebra and H is a

Hilbert space of dimension at least two. Choose orthonormal elements h1 and

h2 of H. Then h1 and h2 are rigidly collinear. Now, since P
(1›hj)
i = id›P

hj

i ,

for (i; j = 1; 2), 1 › h1 and 1 › h2 are rigidly collinear. Thus, the tripotents

of I that correspond to 1 › h1 and 1 › h2 are rigidly collinear tripotents of

M , contradicting (3.4.22). 2

We have reached the following extension of (3.4.2).
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Theorem 3.4.24

Let M be a universally reversible JW*-algebra with no non-zero symplectic

part. Then the map, e 7! eM`(e), is an order preserving bijection from

P(W ⁄(M); `) onto the set of weak* closed inner ideals of M , where ` is the

canonical involution of



We will also require the next proposition.

Proposition 3.4.25

Let M be a universally reversible JW*-algebra without type I1 part. Let I

be a weak* closed rectangular inner ideal of M without type I1 part. Then

I = eM`(e), for some projection e in W ⁄(M), where ` is the canonical

involution of W ⁄(M).

Proof

Let Mz be the weak* closed ideal of M generated by I, where z is a central

projection in M . The involution ` of W ⁄(M), through restriction, gives rise

to the canonical involution of W ⁄(Mz) = W ⁄(M)z. Further, since M is

universally reversible, Mz = W ⁄(M)`z [HaSt, 7.3.3]. Now, through (3.3.20),

Mz is *-isomorphic to a type I W*-algebra. Thus, via (3.4.2), there exists a

projection e in W ⁄(M)z such that I =



3.5 Cartan Factor Representation Theory

3.5.1 Cartan factor representation theory is a key technique used within the

thesis, and thus warrants a clear account. The material given in this section,

the majority of which is known, is influenced by that contained in [BuChZa1].

Simplistically, the Cartan factor representation structure of a JB*-triple A is

(mostly) determined by the structure of its second dual. Specifically, if C is

a finite dimensional Cartan factor, we shall show here that A has a Cartan

factor representation onto C precisely when the bidual of A has a weak*

closed ideal that is isomorphic to C(X) › C, where X is some compact

hyperstonean space.

Proposition 3.5.2

Let C be a Cartan factor and let A be a JB*-triple. Then there exists a

Cartan factor representation … : A ¡! C if and only if C is isometric to a

weak* closed ideal of A⁄⁄
at .

Proof

Suppose that such a Cartan factor representation … : A ¡! C exists. Then

A⁄⁄ = C ' ker…̂, where …̂ : A⁄⁄ ¡! C is the weak* continuous extension of

…. Clearly C ‰ A⁄⁄
at and since ker…̂ is a weak* closed ideal so is C [Ho1, x4].

Conversely suppose that C is a weak* closed ideal of A⁄⁄
at with natural pro-

jection P : A⁄⁄ ¡! C. Then the restriction of P to A is a Cartan factor

representation of A. 2

Proposition 3.5.3

Let C be a finite dimensional Cartan factor and X be a compact Hausdorff

space. Let D be a Cartan factor such that D ‰ C(X) › C. Then D is

isometric to a subfactor of C.

81



Proof

For each x in X define …x : C(X) › C ! C to be the linear map satisfying

…x(f › a) = f(x)a. Then …x is a Cartan factor representation and moreover

f…x : x 2 Xg is a faithful family of Cartan factor representations. The

faithfulness condition follows from the fact that C(X) › C »= C(X; C), via

f › a 7! f(:)a; if b =
Pn

1 fi › ai 6= 0 then g =
Pn

i fi(:)ai 6= 0 so that, for

some x 2 X, …x(b) = g(x) 6= 0.

Suppose that D is non-zero and choose x in X such that …x(K(D)) 6= 0.

Such an x exists since the family is faithful, and since K(D) is, by definition,

non-zero. As K(D) is simple we have K(D) »= …x(K(D)) ‰ C. It follows

that K(D) is finite dimensional and is thus reflexive, so that

K(D) = K(D)⁄⁄ = D;

and so D is isometric to a subfactor of C, as required. 2

Proposition 3.5.4 ([BuChZa1, 2.3])

Let C be a finite dimensional Cartan factor and let A be a JB*-triple.

Then all Cartan factor representations of A are onto C if and only if

A⁄⁄ = C(X) › C for some compact Haudsdorff space X.

3.5.5 A JB*-triple A is said to be type C, for some finite dimensional Cartan

factor C, if A=ker… »= C, for all Cartan factor representations … of A, that

is, if all Cartan factor representations of A are onto C. By convention, the

zero triple is of every type.

We remark that by the previous theorem, if a JB*-triple A is type C, where

C is a finite dimensional Cartan factor, then the bidual of A is isomorphic

to C(X) › C, for Tf 9.24.16(theor96)]TJ(Ato)]Tn619i96 )



Theorem 3.5.6 ([BuChZa2, 5.1])

Let A be a JB*-triple with a Cartan factor representation with rank n, where

n < 1. Then either all Cartan factor representations of A have rank at most

n, or A contains a non-zero ideal J such that

(a) all Cartan factor representations of J have rank greater than n;

(b) all Cartan factor representations of A=J have rank at most n.

We have the following extension of (3.5.4).

Proposition 3.5.7

Let C be a finite dimensional Cartan factor and let A be a JB*-triple. Then

there exists a Cartan factor representation … : A ¡! C if and only if there

exists a weak* closed ideal J of A⁄⁄ such that J »= C(X) › C, for some

compact hyperstonean space X.

Proof

Let … : A ¡! C be a Cartan factor representation. Then, via (3.5.2), C is

isometric to a weak* closed ideal of A⁄⁄
at so that the result follows.

Conversely, suppose that there exists a weak* closed ideal J of A⁄⁄ such

that J »= C(X) › C. Let P : A⁄⁄ ¡! J be the natural weak* continuous

projection. Then J = P (A), where bar denotes weak* closure. Since

P (A) »= A=(A \ kerP );

which is a quotient of A, it is enough to show that P (A) has a Cartan factor

representation onto C.

As P (A) ‰ J , we have that P (A)⁄⁄ ‰ J⁄⁄ »= C(Y ) › C, for some compact

hyperstonean space Y . Let D be a weak* closed Cartan factor ideal of

P (A)⁄⁄. Then, by (3.5.3), D is isometric to a Cartan subfactor of C.
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It is now immediate from (3.5.2) that all Cartan factor repesentations of

P (A) are onto subfactors of C.

Let C0; C1; :::; Cn be the Cartan factors arising from the Cartan factor rep-

resentations of P (A). Then, using (3.5.6), there is a composition series of

norm closed ideals of P (A), (Ji)0•i•n+1, with Ji+1=Ji homogenous type Ci,

for distinct Cartan factors Ci. Thus, via (3.5.4), as remarked in (3.5.5),

P (A)⁄⁄ »=
X ¡

Ji+1=Ji

¢⁄⁄ »=
X

C(Xi) › Ci;

where both sums are ‘1-sums.

Finally, there is a weak* continuous triple homomorphism

ˆ : P (A)⁄⁄ ¡! P (A) = J »= C(X) › C;

and hence P (A)⁄⁄ has a weak* closed ideal isomorphic to C(X) › C. There-

fore Ci = C for some i, and consequently P (A) has a Cartan factor repre-

sentation onto C. 2

3.5.8 We make the following aside. Let J »= C(X) › C be a weak* closed

ideal of the bidual of some JB*-triple, where C is a finite dimensional Cartan

factor and X is some compact hyperstonean space. Let B be a JB*-triple

contained in J . Using the argument contained in the proof of the previous

proposition, (3.5.7), we see that every Cartan factor representation of B

is necessarily onto a subfactor of C. We can go further and deduce that

B⁄⁄ »=
¡ P

C(Xi) › Ci

¢
1, for some compact hyperstonean spaces Xi, where

the Ci denote these subfactors of C.
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The next two propositions are counterparts of (3.5.4) and (3.5.7).

Proposition 3.5.9

Let A be a JB*-triple. Then the following are equivalent.

(a) A⁄⁄ is type I1.

(b) All Cartan factor representations of A are onto Hilbert spaces.

Proof

(a) ) (b) Assume (a) and let … : A ¡! C be a Cartan factor representation of

A. Then C is isometric to a weak* closed ideal J of A⁄⁄ (3.5.2). Let

u be a non-zero tripotent in J . Choose a tripotent v of A⁄⁄ such that

u is a projection in A⁄⁄
2 (v). Since A⁄⁄

2 (v) is an abelian JW*-algebra

(by (3.3.17(c))), and because J2(u) is a subfactor of it, we must have

J2(u) = Cu so that u is a minimal tripotent of J . Thus all tripotents

of J are minimal and hence J is a Hilbert space [DaFr, p308]. It is now

evident that C is a Hilbert space.

(b) ) (a) Assume (b). Then the atomic part, M , of A⁄⁄ is an ‘1-sum of Hilbert

spaces and so is type I1 [Ho2, x2]. However, A embeds as a JB*-

subtriple of M (2.12.3). So, A⁄⁄ can be realised as a JBW*-subtriple

of M⁄⁄, and it follows from (3.3.18) that A⁄⁄ is type I1. 2

85



Proposition 3.5.10

The following are equivalent for a JB*-triple A.

(a) A has a Cartan factor representation onto a Hilbert space.

(b) A⁄⁄ has non-zero type I1 part.

Proof

(a) ) (b) This is clear.

(b) ) (a) Assume (b) and let P : A⁄⁄ ! J be the natural projection, where J

denotes the type I1 part of A⁄⁄. Then P (A)⁄⁄ is contained in J⁄⁄ so that

P (A)⁄⁄ is type I1 by (3.3.18). Hence, all Cartan factor representations

of P (A) are onto Hilbert spaces (3.5.9). However, P (A) is a quotient

of A, giving (a). 2
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Chapter 4

The Inner Stone-Weierstrass Theorem for

Universally Reversible JC*-Algebras

4.1 Introduction

The ultimate aim of the thesis is to determine inner ideals in JB*-triples

by extreme points of their dual balls. The means by which this objec-

tive is achieved is what we, from now on, choose to term the Inner Stone-

Weierstrass Theorem:

Let A be a JB*-triple with norm closed inner ideals I and J, such that I ‰ J .

Suppose that @e(I
⁄
1 ) = @e(J

⁄
1 ). Then I = J .

In this chapter, we establish the Inner Stone-Weierstrass Theorem for univer-

sally reversible JC*-algebras, a theorem which is exploited in Chapter Five

to prove the full theorem for JB*-triples.



Let I and J be norm closed inner ideals in a universally reversible JC*-

algebra A, such that I ‰ J . To observe that I is equal to J , it is enough

to prove the equality of the corresponding biduals in A⁄⁄. This JW*-algebra

decomposes into a continuous part and a type I part, and the latter part

in turn decomposes into summands of the form B›C, where C is a Cartan

factor and B is an abelian von Neumann algebra [Ho2]. Making use of

the Cartan factor representation theory of section (3.5), we find that the

assumption that I⁄⁄
at = J



4.2 Inner Ideals and the Atomic Part

4.2.1 This section takes the form of a series of necessary technical lemmas

investigating the atomic part of the bidual of a norm closed inner ideal. Let

A be a JB*-triple with norm closed inner ideal I. We shall prove that when

@e(I
⁄
1 ) = @e(A

⁄
1), the biduals of A and I have the same atomic part, or alter-

natively, that I separates @e(A
⁄
1) [ f0g, thereby validating our terminology.

Furthermore, we will demonstrate that when A⁄⁄
at = I⁄⁄

at , we can conclude

that A is equal to I, if either A is a C*-algebra or I is a triple ideal. Finally,

utilising the exposition of Chapter Three (3.5), we will show that given this

equality of atomic parts, I has a Cartan factor representation onto a specfic

Cartan factor C precisely when A does.

Lemma 4.2.2

Let M be an atomic JBW*-triple with weak* closed inner ideal I. Then I is

atomic.

Proof

As



Lemma 4.2.3

Let A be a JB*-triple and let I be a norm closed inner ideal of A.

Let ‰ 2 @e(A
⁄
1). Then

(a) I⁄⁄
at = I⁄⁄ \ A⁄⁄

at ;

(b) ‰(I) = 0 if and only if ‰(I⁄⁄
at ) = 0:

Proof

(a) Clearly I⁄⁄
at ‰ I⁄⁄ \ A⁄⁄

at . Conversely, since I⁄⁄ \ A⁄⁄
at is a weak* closed

inner ideal of A⁄⁄
at , it follows by (4.2.2) that it is atomic. However it is

also clearly a weak* closed inner ideal of I⁄⁄ and so I⁄⁄ \ A⁄⁄
at ‰ I⁄⁄

at .

(b) Let ‰ 2 @e(A
⁄
1) such that ‰(I) = 0. Then as ‰(I⁄⁄

at ) is contained in ‰(I⁄⁄)

and the latter is zero by weak* continuity of ‰, we see that ‰(I⁄⁄
at ) = 0.

Conversely suppose that ‰(I⁄⁄
at ) = 0. By part (a) I⁄⁄

at = I⁄⁄ \ A⁄⁄
at , and

so, via (2.10.15(a)), we have

I⁄⁄ = I⁄⁄ \ A⁄⁄
at ' I⁄⁄ \ (A⁄⁄

at )
?

= I⁄⁄
at ' I⁄⁄ \ (A⁄⁄

at )
?:

Therefore ‰(I⁄⁄) = 0, as required. 2

4.2.4 It is now possible to give the following equivalent conditions, that

demonstrate, amongst other things, that the coincidence of the atomic parts

of the biduals of a JB*-triple and its inner ideal can be represented in terms

of a Stone-Weierstrass separation condition.
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Theorem 4.2.5

Let A be a JB*-triple and let I be a norm closed inner ideal of A. Then the

following are equivalent.

(a) ‰(I) 6= 0 for all ‰ 2 @e(A
⁄
1).

(b) I⁄⁄
at = A⁄⁄

at .

(c) For all ‰ 2 @e(A
⁄
1) the restriction of ‰ to I lies in @e(I

⁄
1 ).

(d) The unique extension map from @e(I
⁄
1 ) to @e(A

⁄
1)



(e) ) (a) Suppose that there exists ‰ 2 @e(A
⁄
1) such that ‰(I) = 0. Then ‰

agrees with the zero function on I. It follows that I does not separate

@e(A
⁄
1) [ f0g. 2

4.2.6 The maximal norm closed left and right ideals of a C*-algebra are

completely classified in terms of pure states.

Theorem 4.2.7 ([Ped1, 3.13.6])

Let A be a C*-algebra and let ‰ 2 P (A). Then

(i) L‰ = fx 2 A : ‰(x⁄x) = 0g is a maximal norm closed left ideal of A;

(ii) R‰ = fx 2 A : ‰(xx⁄) = 0g is a maximal norm closed right ideal of A;

(iii) L‰ + R‰ = ker‰;

(iv) ‰(L‰) = ‰(R‰) = 0;

(v) L‰ and R‰ are precisely the maximal norm closed left and right ideals

of A, respectively, as ‰ ranges over P (A).

4.2.8 Let A be a C*-algebra with norm closed inner ideal I. From the

classification provided above, in (4.2.7), it is simple to observe that I is

equal to A if and only if it is not annihilated by any pure state of A. Indeed,

if I is not equal to A then, as the intersection of closed left and right ideals,

I is contained in L‰ or R‰, and sotained in



Proposition 4.2.10

Let A be a JB*-triple and let J be a norm closed ideal of A. Suppose that

J⁄⁄
at = A⁄⁄

at . Then J = A.

Proof

By (4.2.5(a)(b)), ‰(J) 6= 0 for all ‰ 2 @e(A
⁄
1). Suppose that J is not equal to

A, so that there exists some non-zero ‰ 2 @e((A=J)⁄
1). Then, via the bijection

(2.10.9(b)(iii)) between @e((A=J)⁄
1) and the extreme points of A⁄

1 vanishing

on J , we obtain, in contradiction, ‰̂ 2 @e(A
⁄
1) such that ‰̂(J) = 0. 2

4.2.11 Let A be a JB*-triple with norm closed inner ideal I. Recall that T (I)

denotes the norm closed ideal of A generated by I. Since I⁄⁄
at ‰ T (I)⁄⁄

at ‰ A⁄⁄
at ,

we have the following corollary of (4.2.10).

Corollary 4.2.12

Let A be a JB*-triple and let I be a norm closed inner ideal of A such that

I⁄⁄
at = A⁄⁄

at . Then T (I) = A. That is, A is generated as a norm closed ideal

by I.

4.2.13 Let I be a norm closed inner ideal of a JB*-triple A and suppose that

A⁄⁄ and I⁄⁄ have equal atomic part. The role of the next proposition is, es-

sentially, to illustrate how this supposition translates to the quotient of A by

any norm closed ideal, J say, and also to the intersection, I \J . Importantly,

we also show that this constraint is preserved by triple homomorphisms …,

that is, if I⁄⁄
at = A⁄⁄

at then …(I)⁄⁄
at = …(A)⁄⁄

at .
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Proposition 4.2.14



4.2.15 Recall that if A is a JB*-triple, then A⁄⁄
at is an ‘1 direct sum of

Cartan factors, A⁄⁄
at =

P
Cfi, say. Furthermore, if I is an inner ideal of A

with I⁄⁄
at = A⁄⁄

at , then, as in the proof of (4.2.5(a)),

X
Cfi = A⁄⁄

at = I⁄⁄
at =

X
I⁄⁄ \ Cfi:

Therefore, using (3.5.2), this condition on the atomic part of I⁄⁄ guarantees

that A and I have the same Cartan factor representations in the following

sense.

Lemma 4.2.16

Let C be a Cartan factor. Let A be a JB*-triple with norm closed inner ideal

I. Suppose that I⁄⁄
at = A⁄⁄

at . Then I has a Cartan factor representation onto

C if and only if A has a Cartan factor representation onto C.

4.3 The Finite Cartan Part

4.3.1 We shall say that a JBW*-triple M is of finite Cartan factor type if it

is an ‘1-sum of the form
P

Ai › Ci, where the Ai are abelian von Neumann

algebras and the Ci are finite dimensional Cartan factors. For any JBW*-

triple M , we define the finite Cartan part of M , denoted by Mf , to be the

largest weak* closed ideal of finite Cartan factor type contained in M .

4.3.2 Let I be a norm closed inner ideal of a JB*-triple A such that the

atomic parts of I⁄⁄ and A⁄⁄ coincide. We shall now show the equality of the

finite Cartan factor parts of I⁄⁄ and A⁄⁄. In particular, in conjunction with

(4.2.5), this means that if K and J are norm closed inner ideals of A such that

K ‰ J and @e(K
⁄
1) = @e(J

⁄
1 ), then we can conclude that K⁄⁄

f = J⁄⁄
f . Hence,

to prove the Inner Stone-Weierstrass theorem, that is, that under these con-

ditions K = J , the outstanding problem is then to show the coincidence of

the remaining parts.
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Proposition 4.3.3

Let A be a JB*-triple. Let I be a norm closed inner ideal of A such that

I⁄⁄
at = A⁄⁄

at . Then I⁄⁄ and A⁄⁄



4.4 The Inner Stone-Weierstrass Theorem for Uni-



The spaces H‰ = fa 2 A : ‰(a⁄a) = ‰(aa⁄) = 0g, are the maximal proper



We shall now prove the Inner Stone-Weierstrass Theorem for C*-algebras.

Theorem 4.4.4



4.4.5 Let A be a JC*-algebra and let I be a norm closed inner ideal of A. In

order to exploit the previous theorem for C*-algebras, (4.4.4), and ultimately

prove the analogous result for JC*-algebras, we consider the embedding of

A in its universal enveloping C*-algebra, C⁄(A). In the remainder of this

chapter we employ the following notation. We shall use Ie to denote the

norm closed inner ideal of C⁄(A) generated by I. We have the subsequent

commutative diagram of canonical embeddings.

I ,! A ¡! A⁄⁄

# # #

Ie ,! C⁄(A) ¡! C⁄(A)⁄⁄ = W ⁄(A⁄⁄)

Here, the equality comes from [HaSt, 7.1.11].

In what follows we also re-use some earlier notation; if J is a weak* closed

inner ideal in a JW*-algebra M , Jew shall denote the weak* closed inner

ideal of W ⁄(M) generated by J .

Lemma 4.4.6

Let A be a JC*-algebra with norm closed inner ideal I. Then (I⁄⁄)ew = (Ie)⁄⁄.

Proof

By looking at the second duals, we have I⁄⁄ ‰ (Ie)⁄⁄, which is a weak* closed

inner ideal of C⁄(A)⁄⁄. Thus, by definition, (I⁄⁄)ew ‰ (Ie)⁄⁄.

Conversely, I is contained in (I⁄⁄)ew \ C⁄(A), a norm closed inner ideal of

C⁄(A). So, again by definition, Ie ‰ (I⁄⁄)ew \C⁄(A) ‰ (I⁄⁄)ew. The converse

now follows by taking the weak* closure of Ie in C⁄(A)⁄⁄. 2

100



Theorem 4.4.7 ([HaSt, §7],[Aj, §4])

Let M be a JW*-algebra generating a W*-algebra W (in some B(H)).

(a) If M has no type I2 part then M is type I, II or III if and only if W is

type I, II or III, respectively.

(b)



Next we consider the associated weak* closed inner ideals that are generated

in the universal enveloping W*-algebra. We have

(I⁄⁄)ewz = (I⁄⁄z)ew = (J⁄⁄z)ew = (J⁄⁄)ewz;

so that, via (4.4.6), (Ie)⁄⁄z = (Je)⁄⁄z.

Since s(‰) • z, so that ‰(z) = 1, we have ‰(az) = ‰(a) for all a in C⁄(A)⁄⁄.

Hence ‰((Ie)⁄⁄) = ‰((Ie)⁄⁄z) = ‰((Je)⁄⁄z) = ‰((Je)⁄⁄) 6= 0. So ‰(Ie) 6= 0, as

required. 2

4.4.9 Let I be a weak* closed inner ideal of a universally reversible JW*-

algebra M . Furthermore, suppose that neither I nor M has non-zero type I1

part. There exist central projections z1; z2 2 M with z1 + z2 = 1, and such

that M = Mz1 ' Mz2, where Mz1 and Mz2 are, respectively, the type I and

continuous parts of M . Then I has a similar decomposition into type I and

continuous parts, given by Iz1 and Iz2, respectively.

The canonical involution ` of W ⁄(M), through restriction, gives rise to the

canonical involution on W ⁄(Mz2) = W ⁄(M)z2. As M is universally re-

versible, Mzi = W ⁄(M)`zi (i = 1; 2) [HaSt, 7.3.3]. So, by (3.4.2), the

continuous part of I is of the form ”eM`(e)”.

The type I part of I can be further decomposed into the sum of its finite

Cartan part and its complement, N , say. By construction, N is an ‘1-sum

of JW*-triples of the form A›C, where A is an abelian von Neumann algebra

and C is a Cartan factor of infinite dimension. Since, except when C is rect-

angular, all such summands possess a unitary tripotent, we have N = K 'R,

where K contains a unitary tripotent u, say, and where R is rectangular with-

out type I1 part. As a consequence, K = uu⁄Ku⁄u = eM`(e), where e is the

projection uu⁄ in W ⁄(M). Through (3.4.25), R is also of the form ”eM`(e)”.
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Taking this discussion as our motivation, in the final preparatory step of

this section we show that inner ideals of the form ”eM`(e)” are determined

by the weak* closed inner ideals they generate in W ⁄(M). In fact, for those

universally reversible JW*-algebra without symplectic type I part, this result

is contained within the proof of (3.4.24).

Lemma 4.4.10

Let M be a universally reversible JW*-algebra and let e be a projection in

W ⁄(M). Let I = eM`(e). Then I = Iew \ M .

Proof

Since I is contained in eW ⁄(M)`(e) we have, by definition,

Iew ‰ eW ⁄(M)`(e):

However I = eW ⁄(M)`(e)\M . Indeed given x 2 eW ⁄(M)`(e)\M we have

x = ea`(e) for some a in W ⁄(M), so that

x = `(x) = e`(a)`(e) = e
¡a + `(a)

2

¢
`(e) 2 I:

The conclusion is now clear. 2

4.4.11 We are now ready to prove the Inner Stone-Weierstrass Theorem for

universally reversible JC*-algebras. Subsequently, we shall extend this the-

orem to all JB*-triples (5.4.9), included amongst which are all JC*-algebras

and JB*-algebras. We make repeated use of the elementary fact that if U; V

and W are subspaces of the same linear space, and are such that U ‰ V ,

U + W = V + W and U \ W = V \ W , then U = V .
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Theorem 4.4.12

Let A be a universally reversible JC*-algebra. Let I and J be norm closed

inner ideals of A such that I ‰ J . Suppose that @e(I
⁄
1 ) = @e(J

⁄
1 ). Then

I = J .

Proof

By (4.2.5), I⁄⁄
at = J⁄⁄

at . We claim that it is enough to prove the theorem

in the case when A⁄⁄, I⁄⁄ and J⁄⁄



Now we consider N . Using type decomposition and Cartan factor structure,

we can create a further decomposition into a continuous part, and a type

I part (containing no part of finite Cartan type). As discussed in (4.4.9),

each summand is of the form eA⁄⁄`(e), for some projection e in C⁄(A)⁄⁄,

and thus N also has this form. Since a similar argument holds for K, we

have projections e; f 2 C⁄(A)⁄⁄ such that N = eA⁄⁄`(e) and K = fA⁄⁄`(f).

Now, through (2.10.21) and (4.4.6), together with (4.4.8), we observe that

M ew ' N ew = (Ie)⁄⁄ = (Je)⁄⁄ = M ew ' Kew:

Thus N ew = Kew. It follows from (4.4.10) that

N = N ew \ A⁄⁄ = Kew \ A⁄⁄ = K;

and therefore I⁄⁄ = J⁄⁄, so that I = J , as required. 2
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One technicality, in conjunction with Cartan factor representation theory

(3.5.6), is vital to our argument. Namely, we demonstrate that to deduce the

Inner Stone-Weierstrass Theorem for a JB*-triple A, it is sufficient to show

it holds for an ideal J of A and for the quotient, A=J . Through this tech-

nicality, our attention can be focused upon JC*-triples whose Cartan factor

representations all have rank greater than two. Indeed, the Inner Stone-

Weierstrass Theorem for JB*-triples can be constructed from the JC*-triple

version, using this argument, since every JB*-triple A has an exceptional

postliminal ideal J such that A=J is a JC*-triple (2.12.6). The postliminal

case is covered by the Stone-Weierstrass Theorem for postliminal JB*-triples

provided by Sheppard, [Shep3, 5.5]. Furthermore, through (3.5.6), we can

isolate a non-zero ideal K of A such that K=J is postliminal, and all Cartan

factor representations of J have rank greater than two.

In broad terms, to prove the Inner Stone-Weierstrass theorem for these par-

ticular JC*-triples, we make use of the version for universally reversible

JC*-algebras (4.4.12). We use a composition series argument typical of

[BuChZa2]. More precisely, in the most important stage of this chapter,

for a JC*-triple whose Cartan factor representations all have rank greater

than two, we identify a composition series with successive quotients that are

isomorphic to inner ideals in a universally reversible JC*-algebra. Such an

isomorphism may be of independent interest. The crucial step is the identi-

fication of a non-zero ideal, through [MoRod1], with which to commence the

series.
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5.2 Clifford and Z-Hermitian Type JB*-Triples

5.2.1 Our remarks in this section are overwhelmingly influenced by the pi-

oneering interpretation by Moreno-Galindo and Rodriguez-Palacios, given

in [MoRod1] and [MoRod2], of the algebraic work of Zel’manov. The deep

achievement of [MoRod1] was the classification of prime JB*-triples (together

with their real versions). This was derived by the introduction of new tech-

niques into JB*-triple theory. It is some of these techniques that we exploit

in order to penetrate structure theory. We show, see (5.3.9), that if a JC*-

triple has only Cartan factor representations of rank greater than two, then

it has a composition series in which successive quotients can be realised as

inner ideals in a universally reversible JC*-algebra. This is an important step

towards the proof of the general Inner Stone-Weierstrass Theorem. It might

also be of some independent interest.

For clarity and in order to explain terms, we have extracted the following syn-

opsis from [MoRod1], where full details can be found. We first remark that in

place of the term ”hermitian” used in [MoRod1][MoRod2] we have employed

the invented term Z-hermitian. Our excuse for this is that throughout this

thesis we use the term hermitian in a way that conflicts with its meaning in

[MoRod1][MoRod2].

5.2.2 Given a set of indeterminates X, A(X) denotes the free associative

algebra generated by X and ST (X) denotes the Jordan subtriple of A(X)

generated by X. The Jordan triple system ST (X) is the free Jordan triple

system generated by X. A certain distinguished ideal, the Zel’manov ideal,

G, of ST (X) leads to the following definitions.
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Let A be a JC*-triple. Then A is said to be Z-hermitian if G(A) 6= 0, that

is, if for some triple polynomial p(x1; :::; xn) 2 G there exist a1; :::; an 2 A

such that p(a1; :::; an) 6= 0. If G(A) = 0 then A is said to be Clifford type.

It is immediate from the definition that if A is a JC*-triple of Clifford type

then so is every JC*-subtriple and quotient of A.

Theorem 5.2.3 ([MoRod1, 6.1])

Let C be a special Cartan factor. Then

(a) C is of Clifford type if and only if C has rank at most two;

(b) C is of Z-hermitian type if and only if C has rank greater than two.

Proof

Part(a) is [MoRod1, 6.1]. Part (b) is immediate from (a). 2

Proposition 5.2.4

Let A be a JC*-triple. Then

(a) A is of Clifford type if and only if all Cartan factor representations of

A have rank at most two;

(b) A is of Z-hermitian type if and only if A has a Cartan factor represen-

tation of rank greater than two.

Proof

(a) Let … : A ! C be a Cartan factor representation. If A is of Clifford

type then C is of Clifford type through the argument of the second

paragraph of the proof of [MoRod1, 7.3]. Thus the rank of C is at

most two (5.2.3(a)).
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On the other hand, suppose that C has rank at most two, and so,

through (5.2.3), is of Clifford type. Let p(x1; :::; xn) lie in the Zel’manov

ideal and let a1; :::; an 2 A. As C is of Clifford type, we have

…(p(a1; :::; an)) = p(…(a1); :::; …(an)) = 0:

Therefore, if all Cartan factor representations of A have rank at most

two, we must have p(a1; :::; an) = 0, and so G(A) = 0, giving that A is

of Clifford type.

(b) This is immediate from part (a). 2

5.3 A Composition Series Relating JC*-Triples to

Universally Reversible JC*-Algebras

5.3.1 The purpose of this section is to show that every Z-hermitian JC*-

triple, that is, a JC*-triple for which all Cartan factor representations have

rank greater than two, has a composition series whose successive quotients

can be realised as norm closed inner ideals in a universally reversible JC*-

algebra. As in section (5.2), we again make essential use of the ideas and

results of [MoRod1].

5.3.2 To begin with, we recall that a C*-algebra A has a matricial decom-



5.3.3



Theorem 5.3.4 ([MoRod1, 5.6])

Let A be a Z-hermitian JC*-triple. Then there exists a C*-algebra B with a

matricial decomposition fBijg and an associated even swapping involution,

fi, such that

(a) A contains a non-zero ideal J »= Bfi \ B12;

(b) Bfi \ B12 generates B as a C*-algebra.

We now come to the point of this discussion.

Lemma 5.3.5

Let fAijg be a matricial decomposition of a C*-algebra A. Then A12 is a

norm closed inner ideal of A.

Proof

By definition, A12 is norm closed and the multiplication rules give

A12AA12 = A12(A11 + A12 + A21 + A22)A12

‰ A12A21A12 ‰ A12: 2

The following is slightly more general than we require.

Lemma 5.3.6

Let I be a norm closed inner ideal in a JC*-triple A and let J be the norm

closed ideal of A generated by I. Let every Cartan factor representation of



Proof

Let … : J ! C be a Cartan factor representation of J . Since I generates J ,

if … vanishes on I then it vanishes on J . Hence, the weak* closure D of …(I)

in C is a non-zero weak* closed inner ideal of C, and thus a Cartan factor.

By hypothesis, D has rank greater than two. Therefore, C has rank greater

than two. 2

Proposition 5.3.7

Let A be a JC*-triple for which every Cartan factor representation has rank

greater than two. Then A contains a non-zero norm closed ideal J that

is isomorphic to a norm closed inner ideal in a universally reversible JC*-

algebra.

Proof

By (5.2.4) A is Z-hermitian. Therefore, by (5.3.4) and (5.3.5), there exists

a C*-algebra B with an involution fi and a norm closed inner ideal I, such

that Bfi \ I generates B and is isomorphic to a norm closed ideal, J say, of

A.

Now, since all Cartan factor representations of J



5.3.8 We can now prove the main result of this section. The implication is

that most JC*-triple theory can be reduced to the study of norm closed inner

ideals in universally reversible JC*-algebras.

Theorem 5.3.9

Let A be a JC*-triple for which all Cartan factor representations of A have

rank greater than two. Then A has a composition series of ideals, (J‚)0•‚•fi,

such that J‚+1=J‚ is isomorphic to an inner ideal in a universally reversible

JC*-algebra.

Proof

By (5.3.7), A contains a non-zero norm closed ideal J1 that is isomorphic to

an inner ideal in some universally reversible JC*-algebra. Since all Cartan

factor representations of A=J1 must have rank greater than two also, it follows

that there is a norm closed ideal J2 of A, such that J1 ‰ J2 and J1 6= J2,

with J2=J1 again of the required form. Proceeding by transfinite induction,

the result follows. 2

5.4 The Inner Stone-Weierstrass Theorem for JB*-

Triples

5.4.1 We are now ready to establish the Inner Stone-Weierstrass Theorem

for JB*-triples, that is, if A is a JB*-triple with norm closed inner ideals I

and J , with I contained in J and such that the extreme dual ball points of

I and J are identical, then I and J are equal. As already intimated in the

introduction to this chapter, as a norm closed inner ideal is a JB*-triple in its

own right it is sufficient to show that the aforementioned theorem holds when

J = A. It only remains to bring together all the key techniques developed in

the earlier sections of this chapter.
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5.4.2 Before we begin this section in earnest, we establish a vital technicality

that enables a useful reduction to be made. That is, we show that it will be

enough to consider JC*-triples whose Cartan factor representations are all of

rank greater than two. We first recall the conjecture we aim to affirm.

Conjecture 5.4.3

Let A be a JC*-triple and let I be a norm closed inner ideal of A. Suppose

that @e(I
⁄
1 ) = @e(A

⁄
1). Then I = A.

Proposition 5.4.4

Let A be a JB*-triple and let J be a norm closed ideal of A. Then if the

conjecture (5.4.3) holds for J and for A=J , it holds for A.

Proof

Let I be a norm closed inner ideal of A such that @e(I
⁄
1





Hence, (I \ Jfl)=Jfl′ is a norm closed inner ideal of Jfl=Jfl′ and, by (4.2.5)

together with (4.2.14(a)(b)), we have

((I \ Jfl)=Jfl′)
⁄⁄
at = (Jfl=Jfl′)

⁄⁄
at :

Thus, using the relevant Inner Stone-Weierstrass Theorem, (4.4.12), in con-

junction with (4.2.5), we see that I\Jfl = Jfl , so that Jfl ‰ I, a contradiction.

2

5.4.7 Let A be a JB*-triple. By Friedman and Russo’s result, (2.12.3), A has

an exceptional ideal J such that A=J is a JC*-triple. Since J is postliminal,

by (5.4.4) together with [Shep3, 5.5], it is enough to show that the conjecture

holds for A=J , that is for a JC*-triple. Therefore the next result follows as

a simple corollary of (5.4.6).

Theorem 5.4.8

Let A be a JB*-triple and let I be a norm closed inner ideal of A. Suppose

that @e(I
⁄
1 ) = @e(A

⁄
1). Then I = A.

Finally we reach our desired conclusion, the Inner Stone-Weierstrass Theorem

for JB*-triples.

Theorem 5.4.9

Let A be a JB*-triple. Let I and J be norm closed inner ideals of A with

I ‰ J . Suppose that @e(I
⁄
1 ) = @e(J

⁄
1 ). Then I=J.
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Theorem 5.5.3

Let A be a JB*-triple and let I and J be norm closed inner ideals of A. Then

I=J if and only if @e(I
⁄
1 ) = @e(J

⁄
1 ).

Proof

Suppose that @e(I
⁄
1 ) = @e(J

⁄
1 ) so that I⁄⁄

at = J⁄⁄
at by (4.2.5). Let N (I; J) denote

the norm closed inner ideal in A generated by I and J , and henceforth let

bar denote weak* closure. By atomic decomposition (2.11.7(a)), we have

I⁄⁄ = I⁄⁄
at ' (I⁄⁄

at )? and J⁄⁄ = h2( 7.97 Tf -0.94 -7.29 TD[(1)]TJ/F3 11.95 Tf 5.67 2.96 TD[())-2786.01 -23./F8 72.95 Tf 12.56 2.96 TD[(')]TJ/F3 16.95 Tf 11.95 0 TD[(()]TJ/F4 11.95 Tf12.42 0 TD[(h2( 7.97 Tf -0.94 -7.29 TD[(1)]TJ/F3 11.95 Tf 5.67 2.96 TD[())-27 TD[(I)]TJ/F3 0711.95 Tf 9.9 2.96 TD[())]TJ/F6 7.97 Tf 4.55 4.93 TD[(?)]TJ/F3 4.95 Tf 12.28 -4.93 TD[(=)]TJ/F4 11.95 Tf 12.42 0 TD[(I)]TJ/F67.97 Tf 6.11 4.93 TD[(⁄⁄)]TJ/F5 7.97 Tf -0.94 -7.89 TD[(at)]TJ/F8 11.95 Tf 12.56 2.96 TD[(')]TJ/F3 16.95 Tf 11.95 0 TD[(()]TJ/F4 11.95 Tf12.42 0 TD[(h2( 7.97 Tf -0.94 -7.29 TD[(1)]TJ/F3 11.95 Tf 55.67 2.96 TD[())-27 TD[(I)]TJ/F3 0811.95 Tf 9.9 2.96 TD[())]TJ/F6 7.97 Tf 4.55 4.93b)26(y)]TJ/F 08195 Tf 12.2:4.55 0 TD[(.3]TJ ET BT/F2 11.9254 11.12.2F)81(rothe)16 11heor218.93))-a)),)-316 see.93) s93I⁄⁄at)?, J1

))?



Theorem 5.5.4

Let A be a JB*-triple and let I and J be two norm closed inner ideals of A.

Then I ‰ J if and only if @e(I
⁄
1 ) ‰ @e(J

⁄
1 ).

Proof

We use the notation of the previous theorem, in particular bar will denote

weak* closure.

Suppose that @e(I
⁄
1 ) ‰ @e(J

⁄
1 ), so that I⁄⁄

at ‰ J⁄⁄
at by (4.2.5). As noted in the

fourth paragraph of (5.5.3), (and in the notation of (5.5.3)),

N (I; J)⁄⁄ ‰ N (I⁄⁄; J⁄⁄);

and J⁄⁄
at ‰ N (I; J)⁄⁄

at ‰ N (I⁄⁄
at ; J⁄⁄

at ), which is contained in J⁄⁄
at , since the

atomic part of the bidual of I is contained in that of the bidual of J . Thus

N (I; J) and J are norm closed inner ideals of A whose second duals have

identical atomic parts. It follows, from (5.4.9), together with (4.2.5), that

I ‰ N (I; J) = J , as claimed.

The converse is apparent. 2
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5.5.5 To conclude, we consider a reformulation of the previous theorem. Let

A be a JB*-triple with norm closed inner ideal I. Let ‰ 2 A⁄ and let ‰jI

denote its restriction to I. By weak* continuity, we can identify ‰ with its

weak* continuous extension and, in this manner, identify the restriction of

‰ to I⁄⁄ with ‰jI . Let I# = f‰ 2 A⁄ : k‰jI k = k‰kg, that is, the set of

functionals of A with norm preserving restriction to I.
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