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1. Introduction 

Aluminium is produced by decomposing alumina dissolved in a molten cryolite 

(sodium aluminium fluoride) by an electric current 
0I  of 350-500kA, which passes vertically 

down from the anode to the cathode (Fig. 1). As a result of this process, a two-layer fluid 

system is formed with molten aluminium at the bottom of the cell and a slightly lighter 

cryolite at the top. Aluminium is then siphoned from the cell periodically. 

As cryolite is a very poor conductor, much of the energy supplied is wastefully 

released in the cryolite layer in the form of Joule heating. The desire to reduce the thickness 

of the cryolite layer, and thus to reduce th
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A particular, widely used, simplified model of the MHD interaction within the cells 

leading to the instability has been suggested in [1], [5]-[7] and later employed in [8]-[16]. The 

model is based on the assumptions that the external, vertical magnetic field is uniform, and 

that the cell is completely covered by the anode. Concerning the nature of the instability 

within the limits of this model, main conclusions made by previous authors may be 

summarised as follows.  

First of all, the external magnetic fields are highly complex, spatially varying within 

the cell. It has been recognized, however, that the most dangerous component of the field is 

vertical. It destabilizes the cell even if it is uniform [6]. 

Secondly, for certain cell geometries there is a critical value of the dimensionless 

parameter 

    gHHLBj )(/ 2121
2

00 , 

above which the disturbance of the interface starts growing in magnitude. In the above 
0j  is 

the density of the supplied current, 
0B  is the induction of the vertical component of the 

 
FIG. 1. Simplified schematic diagram of the aluminium reduction cell with horizontal cross-

section given by an arbitrary function 0),(   yx  
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magnetic field, L  is a typical horizontal dimension of the cell, 
1H , 
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This mechanism, however, has been questioned by Lukyanov, El and Molokov [12], 

who noted that the key coupling between gravity and the Lorentz force occurs at the sidewalls 

rather than inside the domain. It has been suggested that the instability in closed domains 

takes place as a result of multiple reflections and amplification of the waves at the sidewalls. 

Further, an exact solution for a circle has been analysed in [12] for  >> 1 for the 
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cathode are characterised by the electrical conductivities 1 , 
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To summarize, for instability to occur it is essential not only that the boundary is 

present, but that it is electrically insulating [13], [14]. These observations are crucial for 

further understanding of the nature of the unstable modes, as well as for the explanation of the 

fact that some modes develop strong growth, while the other ones are either weakly unstable 

or stable. This will be shown for several geometries of the cell.  

In what follows we analyse first the exact solutions for a half-plane and for a circle for 

 >> 1, and then develop an asymptotic solution for an infinite channel drawing attention to 

the common features of the instability modes for these geometries. Finally we will discuss the 

results obtained both here and previously and will develop a unified view of the mechanisms 

of instability for each group of modes. 

3. Half-plane 

The most basic geometry with a sidewall present is a half-plane x < 0, where the two-

fluid layer is bounded by a sidewall at x = 0 (Fig. 2). For this geometry the boundary 

conditions (2) are: 

 0


x

 ,    
yx 






     at   x = 0  (5a,b) 

We are looking for a solution in the form of travelling waves 

 )exp()(ˆ tiyikx y  ,    )exp()(ˆ tiyikx y  ,  (6a,b) 

where ky > 0 is a real wavenumber, and  is a complex frequency.  
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 Substituting Eqs. (6a,b) into Eqs. (1) and boundary conditions (5a,b) yields: 

 0ˆ
ˆ 2
2

2




xk
dx

d
,    

 ˆˆ
ˆ

2
2

2

yk
dx

d
,  (7a,b) 

 0
ˆ



dx

d
 ,    

 ˆˆ
yki

dx

d
     at   x = 0  (8a,b) 

where  

 222
yx kk  .  (9) 

The solution is(6-25.6116 -4.992 2 2 218 -3.18898) TD(a)5 T(lize)5 T(ds(6-20 T suc)5 T(h)0152( a)5 T( way t 2 2 hs(6-219 D
.00( )Tj88Tw
(wh -.0053 TD
(9)Tj
.3749025 41.153 TD1)Tj
/TT2527.0975 -))Tj
/T498 0 TD
<(ˆ)Tj
/9624TD
(2)Tj()Tj
/T45Tj
.6312 TD
(ˆ)Tj
1.3081 325.74 434.38 Tm
(k)Tj
- TD4j
11.374 )Tj<004b>Tj
-1.1q 1050 TD
<000e>Tj
-1.3081 326.7 412.56 Tm
(ˆ)Tj
-3.4
11.3j
ET
q 1 0/TT5 .41070 ˆˆk
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  xikxikxk

y

x xxy eCeCeCC
k

k
i 





 212212

1
)(ˆ ,  (12) 

where   













)(
1

2

1
22,1

ik

k
C

x

y
 . One of the exponential terms in Eq. (11) is the incident 

wave on the sidewall with the angle of incidence 2/2/   given by the expression 

xy kk /tan  , while the other one is a reflected wave. 
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The reflection angle for which the maximum is reached varies in the range 2/4/ max   

for 0  . The reflection coefficient increases indefinitely as 0 , 2/max  , 

which implies that the short waves almost aligned with the sidewall are amplified most.  

 On the other hand, 

 ...21 1
max  

 ,   ...4/max     as  ,  (16) 

 

FIG. 3. Reflection coefficient as a function of  for several values of : 0.5 (1), 1 (2), 1.5 (3), 2 
(4), 10 (5). 

 
 
FIG. 4. Reflection coefficient as a function of  for several values of the reflection angle:  = 5o 
(1), 30o (2), 45o (3), 60o (4), 85o (5). 
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implying that the amplification of the waves reduces to zero as the magnetic field induction 

increases. 

For 1  and for )1(tan O
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crests and troughs of the wave in the whole domain as shown schematically in Fig. 5b. 

Sufficiently far from the wall the channels for  coincide with those for , and the solution 

tends to become that for the unbounded domain. 

The exact expression for )0(̂  is: 

 
i


2

1
)0(ˆ ,  (19) 

i.e. 0)0(ˆ 1  i  as  . Thus, in the limit not only the normal, but also the 
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where 11612 22/3  
 ,  2/116121 22/1







  

 . Similar to Sec. 3.1, 

parameter 2/ yk  is defined with the wavelength in the direction of propagation scaled 

with 2. 

Eqs. (9) and (22) yield two possible values for , namely: 

 iry ik  / ,  (23) 

where 2222/1 42   AAr , ri  / , and 122 A .  

The solution with positive and negative signs of r represents waves propagating in 

the +y and –y-directions, respectively. The growth rate of the disturbance is determined by the 

imaginary part of  For any non-zero value of  the disturbance propagating in the –y-1
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which formally places an upper limit on the value of . For  = 0.03 this gives  << 2000, i.e. 

the theory presented here is valid for all practical purposes. 

 Calculations by Kohno an 0 0 11.303ˆulok0.6s7dzormT]
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2

2

2

2

xt 






.  (28) 

Thus, the wall either ‘radiates’ or ‘absorbs’ a spatially decaying wave in the transverse 

direction. The source of ‘radiation’ is the Lorentz force on the right-hand side of the boundary 

condition (5b). 

 From Eq. (27) follows that the wave speed in the direction transverse to the wall 

equals to unity, i.e. to the phase speed of gravity waves. The longitudinal wave speed is equal 

to 2/12/11 )2/()2/( 
 yk
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The source of the disturbance is the Lorentz force at the boundary, which results from 

the interaction between the core current with the background field. This current flows owing 

to the differences in the core potential, which is a global function. As the interface 

disturbance  vanishes outside the boundary layer, the core current is purely horizontal. It 

drives the fluid globally from one part of the boundary to the other. Thus the core potential, 

shifted in phase to , synchronises the propagation of the interface disturbance generated 

locally at various parts of the boundary. 

Most of the results in subsections 3.2 and 3.3 have been obtained in [13] and [14]. 

They have been reproduced here as part of the unified theory of the phenomenon. 

4. Circular domain 

Another exact solution for travelling waves, which demonstrates important features of 

the modes, now in a closed domain, may be obtained for a circular geometry. Assuming 

 )exp()(ˆ tiinr  ,    )exp()(ˆ tiinr  ,  (29a,b) 

where 

 a) b) 

FIG. 6. (a) Functions  (solid line),  (broken line), and jy (dotted line) at x = 0, t = 0 for  = 100, and ky = 1 
and (b) schematic diagram of the mechanism of instability 
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 22 rk ,   )()(ˆ rkCJr rn ,    n
r rnrkr )1('ˆ)(ˆ)(ˆ 12   ,  (30a-c) 

)(nJ  is the Bessel function of the first kind [20], n
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Now, for each value of n there is an infinite number of roots ),( ln
rk , l = 1, 2, … of the 

dispersion relation (31). Both real and imaginary parts of the roots are either positive, or equal 

in modulus but negative, as the dispersion relation is invariant with respect to the 

transformation rr kk  . In both cases the roots lead to the same solution. For compatibility 

with the half-plane problem we will be concerned with the latter roots, i.e. Re(kr) = -Re() < 

0, Im(kr) = -Im() < 0 (Fig. 6). 

As  increases, for each value of n the roots with l = 1 behave differently from those 

with 2l  (Fig. 7). For l = 1 both real and imaginary parts of ),( ln
rk  grow in modulus. For 

2l , the real parts of the roots monotonically decrease in modulus, while the imaginary ones 

first grow, and then decrease. Thus there are two distinct groups of modes which are 

discussed below.  

 

l
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 )1(
2

iikr 


 ,  (34a) 

  iL 
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is a global function, and is linear in both x and y. The electric current in the core being 

independent of either x or y 
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4.2 Centre, or Sele modes 
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5. Infinite channel 

 Schematic diagram of an infinite channel is shown in Fig. 10. What is new here with 

respect to the geometries considered before is that there are two separated boundaries, each of 
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   xkxkxikxik yyxx eCeCeCeC  


 65432

1ˆ ,  (41) 

where 222
yx kk  , and C3-C6 are constants.  

The boundary conditions (38a-d) and the normalization condition (39) yield the spatial 

exponents kx as the roots of the dispersion relation 

    0sinsinh)(sinsinh)()1cosh(cos216 2222222  pqqpppqqpq
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5.1 Wall modes 

 

Consider roots 1 and 2 first for Re(kx) < 0. In contrast to the flow in a circular domain, 

which is unstable for any non-zero value of , there is a threshold of instability for the waves 

in a channel. For ky = 1 roots 1 and 2 remain real below cr = 1.6. At  = cr an internal 

resonance occurs as a result of which the imaginary parts of kx and  appear and the flow 

becomes unstable. 

As the two boundaries, located at x = 0 and x = 2 are not connected, two separate 

boundary layers are formed for  >> 1. They are denoted by L1 and L2, respectively (Fig. 10). 
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 Integrating Eqs. (45), and taking into account the normalization condition (39) yields 

the general solution as follows: 

 )exp(ˆ 71  iC
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   )exp(2expˆ 
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However, counter-propagating, unstable, anti-symmetric waves in (x-1) are not only 

admissible, but are directly relevant to the flow in a rectangular domain. Such a wave may be 

represented by a linear combination of the two solutions obtained in the above. This gives: 

 
































2

2

1

1

cosh2

)exp(

cosh2

)exp(

y

y

y

y

k

k

k

k
,  (55) 
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6. Reflection mechanism 

Here a unified view on the nature of stable or weakly unstable modes for various 

geometries is outlined. It allows to understand their properties in terms of wave reflection 
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6.2 Applications of the reflection theory 

 

As has been mentioned at the end of Sec. 5, the origin of the centre modes for a circle 

and a channel is similar. The qualitative difference between the two geometries is that these 

modes are stable for a channel and weakly unstable for a circle. This difference may well be 

explained by the reflection mechanism.  

First of all, it has been established in Sec. 3.1 that for real values of kx, a wave 

reflected from a plane wall, as shown in Fig. 14a, would be amplified. If the wave approaches 

the wall in the reverse direction it would be suppressed. 

For a circle, any wave reflected from the boundary in the counter-clockwise direction 

is amplified (Fig. 14b). Then a reflected wave travels towards the other point of the same 

boundary, and is amplified again. As a result of multiple reflections, the amplitude of the 

wave grows, and all the modes are unstable [12]. 

 
FIG. 14. Schematic diagram of reflection of short waves in various geometries: half-plane (a), 
circle (b), channel (c), square (d), and rectangle (e). The wave is amplified at points A, and 
suppressed at points S. 
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For a channel (Fig. 14c), a wave amplified at one of the walls, reflects from a different 

wall. At that wall the local angle of reflection changes to the opposite, and the wave is 

suppressed. Owing to symmetry, the total coefficient of reflection from the two walls is equal 

to unity, and the wave remains stable. 

For a square (Fig. 14d) any wave propagating counter-clockwise is amplified as the 

‘rays’ form a closed trajectory. This is why the equilibrium is unstable for any non-zero value 

of , similar to a circle. 

 Concerning a rectangle (Fig. 14e), only some of the modes would grow in amplitude 

with time, namely those able to form a closed trajectory. The one shown schematically in  

Fig. 14e would not be. This would ultimately depend on the aspect ratio of the rectangle. As 

the increasing MHD interaction changes the angle 
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insulating boundary form the first group. These waves are most unstable with the growth rate 

being O(1/2) as  . The key element for the development of this type of instability is the 

Lorentz force which carries the fluid from the right side of the crests at the sidewall to the left 

side resulting in anti-clockwise propagation of the wave. As the fluid flows through the core, 

it is accelerated by an unopposed Lorentz force and this leads to the amplification of the wave 
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