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Abstract

Variational principles whose natural conditions are the steady state shallow water
equations of motion are stated. The corresponding variational principles for quasi
one-dimensional flows are derived. Discontinuous solutions of the shallow water
equations are considered by formulating new variational principles, whose natural
conditions include the relations between the flow variables immediately either side
of a hydraulic jump.

Approximations to continuous and discontinuous flows in channels of vary-
ing breadths and constant equilibrium depths are calculated using finite dimen-
sional versions of these variational principles. Approximations to continuous flows
are calculated on fixed grids using both the quasi one-dimensional and the two-
dimensional formulations. Methods of generating adaptive grids in one dimension
using the variational principles are also studied and these allow grid dependent

approximations to continuous and discontinuous quasi one-dimensional flows to

be found.



1 Introduction

In a previous report [1] a number of variational principles for unsteady and steady
continuous shallow water flows were derived. The continuous, differentiable func-
tions which satisfy the variational principles also satisty the shallow water equa-
tions of motion. Many principles are available because the governing physical laws
can be expressed in different variables, and because each free principle can be used
to formulate one or more constrained principles. The main purpose of this report
is to use these variational principles to generate finite dimensional approximations
to solutions of the shallow water equations for channel flows.

In [1] the variational principle devised by Luke [2] for fluid flow beneath a
free surface was used as a starting point to form other principles for unsteady
shallow water flows which were then modified for time-independent flows. In
Section 2 of this report the shallow water equations of steady motion are stated and
the corresponding variational principles for steady flows are given. By assuming
that the flow is quasi one-dimensional, so that the flow variables are functions
of one space coordinate only, corresponding variational principles associated with
quasi one-dimensional shallow water flow can be derived from the two-dimensional
versions given in [1]. This derivation is also described in Section 2.

In Section 3 consideration is given to variational principles for discontinuous
shallow water flows. Under certain circumstances, when the outlet depth is spec-
ified to lie in a particular range of values, a hydraulic jump may occur in the
flow. At such a point of discontinuity the differential equations which govern the
flow are not applicable. The flow immediately in front of the jump is related to
that immediately behind the jump by jump conditions which are statements of
the governing physical laws at such discontinuities ([3]). Three jump conditions
govern the flow at a discontinuity in shallow water. One condition is used to locate
the position of the jump and the other two relate the flow variables either side of
the jump. All three conditions may be incorporated in variational principles for
discontinuous flows.

Approximations to continuous and discontinuous shallow water flows are sought
using the derived functionals. The method used is to find functions in a prescribed
finite dimensional space for which the functionals are stationary. In Section 4 fi-
nite dimensional expansions using finite element basis functions are substituted
into the variational principles and used to derive approximations on a fixed grid
to the flow variables in one and two dimensions.

Approximations to continuous flows on adaptive grids are also considered. The
jump conditions, derived in Section 3 for discontinuous flows, can be applied to
the approximate solution at the internal nodes of the grid to give an algorithm for

generating grid dependent solutions. This process is given in Section 5. An alter-



native method, based on similar reasoning, but solving directly the requirement
that the functionals are stationary with respect to variations in the positions of
the grid points, is also given in Section 5. In the case of minimising a functional
these two methods of generating grid dependent solutions should derive minimum
values less than those derived for the solutions generated on fixed grids but still
greater than the exact minimum. Similar remarks hold for the case of a maximum
principle.

Attempts are also made to approximate discontinuous flows. Finite dimen-



Details are given in Stoker [3]. The conservation of momentum equation (2.4) is
satisfied by F = constant for continuous flows. Thus the energy F is considered
to be a constant whose value is to be specified.

Let  be a channel of slowly varying breadth B(x) and consider a section
of the channel occupying the interval [z.,x,] of the z-axis. Then, under the
above conditions, the flow can be assumed to be quasi one-dimensional in the x
direction. The flow variables are functions of x alone. The V. operator is replaced
by %%(B( z)-) and V by & +. The quasi one-dimensional counterparts of (2.3)
and (2.5) are

(BQ) = 0 conservation of mass, (2.6)
v = &, 2.7)
where ' denotes %. The one-dimensional version of the conservation of momen-

dx
tum equation, £’ = 0, is satisfied exactly by the assumption that E is constant

on [z, z,].

2.2 Variational Principles for Steady Shallow Water

In [1] the variational principle of Luke [2] for fluid with a free surface was used to
derive four variational principles for unsteady shallow water flow by applying the
shallow water approximation to the variables within the functional and performing
changes of variables using (2.1) and (2.2). These principles were then reduced to
corresponding principles for steady shallow water by assuming that all of the flow
variables are independent of time. The resulting variational principles for steady

shallow water are given by

in(@Qv.0) = o{ [[ (lv.B)+Qu(v = Vo)) dudy
n /ECqﬁdZ} —0, (2.8)
§1,(Q,d, ) — 5{//D (H(Q,d) + Ed + 6V.Q) dz dy
+ / 6(C — Qun) dz} — 0, (2.9)
o1s(Q6) = o{ [[ (P(Q.B)+6V.Q)dedy
+ / (C —Qun) dz} —0,  (2.10)
S14(Q,d,v,8) = {// + Qv+ Ed+ ¢V.Q) de dy

+/¢(C—Q.n)dz} — 0. (2.11)
b
The function p is defined by

1 1 2
p(v,E) = — (E = V.V)
2q 2

3



and has the values of pressure. The function can be described as the Lagrangian
density (see [1]) and is defined by

1 J R
A
The function  can be called the Hamiltonian density and is defined by
1 5, 1
( )= 5 T3

Finally, the function  has the values of flow stress and ( ) is defined by

eliminating and from the equations

1 1
= § 2 + = and = + §
The function  in (2.8)—(2.11) is a given function on the boundary ¥ of  and
is regarded as a given constant in these principles.

The natural conditions of (2.8)-(2.11) include the equations of steady shallow









Equations (2.6) and (2.7) govern the motion in the channel away from the
jump but at the discontinuity, where derivatives are not defined, the differential
equations do not apply. The behaviour of the flow variables at a point of discon-
tinuity is governed by the jump conditions (3.1), two of which can be derived as
the natural conditions of variational principles for quasi one-dimensional flow as
follows.

Consider first a general functional of the form

o= 0 0 O 6
where =( 1( ) ... (N5, "=(C%)...(NFand , (. ,)isapoint
at which any of the ; may be discontinuous. The position of ; is allowed to vary
in the variational principle = 0 and gives rise to jump conditions. Using Taylor
series = 0 gives

Te 4=1 71=1
=1 71=1
+ wh + u; Tz, wh + u; [
=1 1=1
—I_ u; ix+ u; g _ —I_ s T+ T — :0 (33)
2_1 & & & &

where + is the side of the point , towards . and ,- is the side of , towards

- At the point , the total variation in ;is given by o= . Hos) s
Substituting this into (3.3) gives the natural conditions of =0 as follows.
7 U; ol =0 =1 [ e 5) ( 5 0] (34)
Tz, u Tt u; =0 =1 (35)
iz e =0 =1 (3.6)
Y W =0 =1 (3.7)
s w i =0 (3.8)
=1 r

The functionals in the one-dimensional variational principles (2.13)—(2.16) are
all of the form (3.2) with , , and being identified with the ; as appropriate.
Thus the natural conditions of (2.13)—(2.16) are given by (3.4)—(3.8). The natural

conditions caused by variations of the ; in the domain, (3.4), and on the inlet



case in Section 2.2. In addition, there are jump conditions caused by the variation

of §, given by,

for the ‘p’ principle

[ CC )+ JL.=0
[ (C )+ ). =0
and [ ( )]%:()and
[ )+ + ). =0

The first jump condition in each case is the conservation of mass flow across the

xr

and

xr

[ ]
for the ‘v’ principle [ |,
for the ‘P’ principle [ ]

[ ]

o O O O

s
s
s
s

and

for the ‘R’ principle .
discontinuity since, by hypothesis for quasi one-dimensional flow, the breadth
is continuous. The same argument applies to the second jump condition in each
case which states that there is no change in the value of the flow stress  across
the jump. That the conditions are the same can be seen by using the definitions
of mass flow and energy, (2.1) and (2.2), to perform changes of variables.

The conditions [ ],, =0 and [ ], = 0 are the same as (3 1); and (3 1), and
are consistent with the theory ([3]).

The constrained ‘t” principle (2.19) will be considered for practical implemen-

tation. The functional for this case is

O= "0+ T e @)
where :%. The natural jump condition of | =0 1is

(C )4 “)a, (( )+ 2y, =0 (3 10)

One method of generating approximations to discontinuous depth functions

which will be given in Section 5 involves finding continuous solutions on [ . )

S [ S S






The Jacobian, J, and the vector = (I,..., F,)T are evaluated using the seven
point Gaussian quadrature formula.

It is possible to deduce properties of the expected solutions using the fact that
the Jacobian is the Hessian of L. From the definition of the function r( ,d) in

Section 2.2, the second derivative of r(Q,d") is given by
2

Tghgh = F g. (48)
Substituting the definitions ) = d"v" and vh? = 2(E  gd") into (4.8) gives
2K
T'ghgh = dT 39 (49)
The depth approximation d” is termed critical at a point if d* = 23—E This is in
g

agreement with the definition of critical flow in the exact solutions and corresponds
to a point where the velocity has the critical value ¢, = g¢d. From (4.9) it can
be seen that if the flow is subcritical, that is d” > %, then rgngn < 0 and if the
flow is supercritical, that is d* < %, then rgngn > 0. From (4.4) the Jacobian has
the form of a weighted mass matrix, where Brgn is the weight function. Thus
if the approximated flow is subcritical in the domain throughout the iterations J
is negative definite and the solution of (4.3) maximises L;. Alternatively, if the
iterated approximate flow is supercritical in the whole domain J is positive definite
and the solution of (4.3) minimises L;. If both subcritical and supercritical flow
occur during the iterations then J may be indefinite.

Thus, given the energy, F. of the flow, the mass flow at channel inlet, C,
and the breadth variation of the channel B(x), finite element depth solutions can
be generated for continuous flows which are either wholly subcritical or wholly
supercritical in the domain except for a possible region of critical flow.

The algorithm is implemented on the equi-spaced grid given by

1

n 1

(v, x) 1=1,...,n, (4.10)

T, =T+

where ., = 0, x, = 10 and n = 21. Two sets of basis functions are considered:
the first, ol (i = 1,...,n), leads to continuous piecewise linear approximations
and the second, af (¢« = 1,...,n 1), gives discontinuous piecewise constant

approximations. The basis functions are defined by

Tro—x
aj(z) = e 0 Lo ;
0 T |2y, 2]
et N LIRS 2]
al(z) = ﬁ r [xg, wiga] =2 ... 1 (4.11)
0 T [51?2'—1751?2'4-1]
l( ) — ;n__w;n__ll [ n—1 n]
0 [ n—1 n]






subcritical solution, using 9 =4 ( =1 ... ), is found after 5 iterations for
critical flow and 3 iterations for non-critical flow.

Figure 2 shows the finite element depth approximations for critical and non-
critical flows in a channel with breadth distribution {( ) ( = 8). The top two
solutions are approximations to subcritical flows and the other two approximate
supercritical flows. Figure 2 shows a linear interpolation to the breadth function

using the 21 grid points given by (4.10). The sides of the channel are almost



points x;.
Let N
La(¢) = [ Bp(@". B)de + CB. (@) = 6" (e1))  (417)

1
where ¢ = (¢y,...,8,)T. The finite element approximation to the velocity poten-
tial is given by ¢ such that L,(¢) is stationary, that is,

0L,

The solution is found using Newton’s method. The Jacobian, J, is given by

J(@p) =1{Ji} = {gf;;} = {83;;;]} = {/:n Bp¢h/¢h/oz/oz/d:1;}

and 1s the Hessian of Ly. As for the ‘t’ principle, the Jacobian can be used to

/ " Bpyi! du+C B, (ai(2,) — aiz1) = 0i = 1,...,n. (4.18)

give information about the approximations. From the definition of the function

p(v, E), the second derivative of p(qﬁh/, FE) is given by

Dgh'ph! = ; (g (¢h/)2 B E) .

Using the constraint v = ¢', an approximation, v", to the velocity, v, is given by
v" = @M. The critical speed ¢, is defined by ¢, = % so that subcritical solutions,
with v* < ¢,, have pygnignt < 0 and supercritical solutions, with v" > ¢, have
pgnignt > 0. Thus, for subcritical flows J is negative definite and for supercritical
flows J is positive definite.

Given an approximation, ¢*, to the solution ¢ a hopefully more accurate

approximation, ¢!, is given by Newton’s method, that is,

! = " +49", (4.19)
where J (") 5¢* —F (¢"). (4.20)

The process is repeated until
max‘5q§f‘ < tolerance. (4.21)

The Jacobian and the vector F are integrated exactly. The Jacobian is again
tridiagonal and (4.20) is solved by Gaussian elimination and back substitution.
The initial approximation, ¢°, to the velocity potential is given by
t—1

qbQ:n_lvo i=1,....n (4.22)

Y is assigned a value which determines whether the solution being calcu-

where v
lated will be the suberitical or the supercritical approximation. If v° < ¢,Z2=%= the

solution will be subcritical and if v° > ¢, £2=%= the solution will be supercritical.
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The algorithm is implemented on the grid given by (4.10) where = 0,

e —
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0
0
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Equations (4.25)3 yield
— /xn Be'Q" de + CB. (i(z,) —ai(20)) =0 1=1,...,n,

which may be rewritten as

2 o
ZQ]/ Ba)a;de = —-CB;,
i=1 u
i+1 Tit1
ZQ]/ Bajajde = 0 t=2,...,n—1,
7=1—1 Ti-1
Z Q]/ ! Ba,/a;dz = CB.,
j=n—1 Tn—1
or as
49Q = Co. (1.26)

where Ag is a constant n x n matrix and Cg is a constant n x 1 vector with only

first and last entries non-zero. The matrix Ag is of rank n — 1 and is singular

but, using the boundary condition @)1 = C, the solution of (4.26) is unique. Ag is

tridiagonal so Q is calculated using Gaussian elimination and back substitution.
Equations (4.25); yield

/an(rdh—l—E)ozid:Jc:O 1=1,....n

1

which, once Q" is known, can be solved for d" in the same way as in Section 4.1.1.

Equations (4.25)y give

/an(rQh—th/)ozidx:O v=1,...,n,

1

which may be rewritten as

2 xr2 T2
Z ok / Bayaj'dx = / Brgnay dz,
j=1 T T

1+1

Tig1 , Tig1 )
Z qb]/ Boja' dr = / Brorajdz  1=2,...,n—1,
j=i—1 Tyi—1 Tyi—1
n Tn Tn
Z qb]/ Ba,aj' dx = / Brora, dz,
j=n—1 Tn—1 Tn—1

or as

Ay = Cy,
where A, is an n x n matrix and C, is an n x 1 vector. Once ¢" and d”" are known
@ can be calculated directly. The matrix A, is of rank n — 1 and singular but
¢ 1s a potential function and the important quantity is its gradient so one of the
values, say ¢1, can be specified arbitrarily. This procedure is equivalent to setting

the arbitrary constant in ¢ by assigning its value at the boundary.

15



Results for critical flow in a channel with breadth () ( = 4), given by
(4.13), are shown in Figure 5. The energy  is taken to be 50. The piecewise
linear approximation to mass flow is given in Figure 5 . The piecewise linear
approximations to the velocity potential and depth for a supercritical flow are
given in Figures 5 and 5 respectively. Figure 5 shows an approximation to the
velocity, the height of each dot representing the magnitude of the velocity over a
particular element.

Results for the corresponding subcritical flow are given in Figure 6.

Thus the quasi one-dimensional variational principles of Section 2 can be used
to generate finite element approximations to all the variables of shallow water
motion. The methods developed so far in this section are now extended to give

an algorithm for generating such approximations in two-dimensions.

The methods of Section 4.1 are extended and used on the constrained ‘p’ principle
(2.12) to generate two-dimensional approximations to the velocity potential. The
approach is essentially the same as the one-dimensional method.

The domain in two dimensions is approximated by a triangular grid. The finite
h
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one-dimensional approximation to ¢, calculated in Section 4.1.2, as the initial

approximation ¢°, that is,

¢?+(j_1)n:q§i t=1,....n,73=1,....m,

~ ~

where ¢ = (qﬁl,...,q;n)T is the one-dimensional solution vector. Then, using

k
By(x) with | = 5, n = 5 and m = 3, the ratio max, 00|

max;
k

B

reached a minimum

X

of 2.35 x 1072 for 4 Newton iterations but increased as the iterations continued.
The approximate solution at £ = 4 is shown in Figure 9. This is the piecewise
constant velocity approximation calculated from v* = V¢" on each element, the
length of the arrow in each element being directly proportional to the magnitude
of v*. The failure of the method to converge completely in this case might be the
result of the occurrence of a hydraulic jump in the supercritical flow for the shapes
of channel considered. The approximation does exhibit certain properties of the
exact solution in that the magnitude of the supercritical velocity decreases as the
channel breadth decreases and the flow directions appear to be approximately
consistent with the boundary conditions of zero flow across the channel sides and
the line of symmetry y = 0.

Figures 10 and 11 show approximations v* to the velocity for subcritical flows.
The breadth variation in each case is By(x) and several values of [ are considered.

Figure 10 is the approximation for [ = 1, n = 9 and m = 7. The increase in
the magnitude of the velocity as the breadth decreases can be clearly seen and
this agrees with the behaviour of exact subcritical solutions. Notice also that the
speed is greater close to the z-axis than it is near the channel sides.

Figure 11 shows the consequences of increasing the lengths of the sections of
the channel where the sides are parallel. In Figure 11a [ = 15 and in Figure 1156
[ = 5. It can be seen that increasing [ from 5 to 15 has very little affect on the
approximation in the region between the lines + = —5 and = = 15. Also notice
that the velocity in the domain {(x,y): « € [—15,—=5],y € [0, B(x)]} is virtually
constant and parallel to the channel sides.

This justifies the use of the boundary conditions C'(y) = —K on ¥, and C'(y) =
KB.
B

o

on Y, for [ >~ 5 which should ideally be applied at the ends of an infinitely
long channel since they assume that the flow is uniform across the inlet and outlet
cross sections.

Thus, the algorithm given in this section can be used to generate a two-
dimensional piecewise constant approximation to the subcritical velocity in chan-

nels of various breadth distributions.

The methods of this section are all concerned with approximating continuous
solutions of the shallow water equations of motion. In Section 5 approximations

to discontinuous solutions are considered.
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5 Solutions on Variable Grids

In order to be able to approximate discontinuous shallow water flows and to im-
prove approximations to continuous flows, methods of generating grid dependent
solutions are now considered.

First, the constrained ‘v’ principle (2.19) is used to generate a piecewise linear
approximation to a discontinuous depth variation on a grid with just one ad-
justable node. This node is placed at the discontinuity by applying the jump con-
ditions of Section 3. The method is modified slightly to generate approximations
to continuous depth variations on variable grids. This idea is extended further to
give a second algorithm for approximating discontinuous solutions. Finally, the
constrained ‘p’ principle (2.18) is used to generate piecewise linear approximations
to the velocity potential on a solution dependent grid generated directly from the

variational principle.

5.1 The Constrained ‘r’ Principle
5.1.1 Grid with One Moving Node

Consider the constrained one-dimensional ‘t” principle (2.19). Let the domain of
integration, [x.,x,], be split into n — 1 adjacent intervals by the points x; (¢ =
L,...,n) given by (4.10). In order to approximate discontinuous flows one of these
grid points must be chosen to be the initial approximation to the position of the
discontinuity. This requires deducing which of the nodes is nearest to the actual
position of the hydraulic jump. Let N = n — 1 be the initial guess for the number
of this node in the grid given by (4.10).

The basis of the method to approximate discontinuous flows is to generate
approximate solutions in front of the jump and behind the jump and to couple
the two approximations by means of a discontinuity at the position of the jump.

The energy F of the flow in front of the jump is given by the specified value
E€. Let the approximation to the depth in this region, [z, 2], be

&(@) = 3 dia (o),

where
wiey | 255 welmal
0 x & |11, 2]
;l_—l;l__ll z E [xi_17 xl]
Oéf(l’) - ﬁ xE[wi,l'H_l] i:2,...,N—17
0 € € [51?2'—1751?2'4-1]
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The equation
r(Qs,dy) + E¢dy — r(Qs,dy) — E°dy =0 (5.3)

is solved to give the value, (),, of the mass flow which would occur at the jump
it di; and d};, were the actual depths of the flow before and after the jump. The
‘v’ principle (2.19), and therefore (5.1), is constrained to satisfy conservation of

mass, that is,

Q(z)B(x) =CB. € [z, 1, (5.4)
Since the breadth distribution is to be specified, (5.4) can be used to find the

point % in the channel where the mass flow is of magnitude Q,. Using the
known breadth variation, B(x), on the outlet section of the channel the value of

2% is found by bisection from

OB,
Qs

It is conjectured that the point 2 is closer to the actual jump position than the

B ()

(5.5)

point xp.

The algorithm for positioning a node at the jump is in two parts. Firstly,
beginning with N = n — 1 the corresponding value of 27! is found. Then,
stepping backwards along the channel to the n — 2 th node, the value of 2”2
is found. TIf (2, 1 — 2" Y (2, —277?) < 0 then x, lies between z,_, and
x,_1. Otherwise the process is repeated until the node j is found such that
(v; — 29) (zj_1 — 2271) < 0. Then, if |z; — 27| < |z;_1 — 227, the number, N, of
the node to be moved to the jump position is j; otherwise N = j — 1.

Once the number of the node to be moved to the jump position has been
established (5.3) is used in an iteration process to position the node at the jump.
The node xy is moved to the position #Y¥ which is calculated from (5.3) and (5.5).
The finite element approximation to d is re-calculated on the modified grid and
if (5.2) is still not satisfied (5.3) is solved for @, then (5.5) yields a new Y. The
node xy is moved to ¥ and the process is repeated until (5.2) is satisfied. The
approximate solution has then been found and zy is an approximation to the
jump position.

The algorithm is applied to a grid with ., = 0, 2, = 10 and n = 21. The

breadth distributions considered here are
2\ K
B7(:1;):6—|—4<1—5) r € lr,z,], k=24

The energy F is taken to be 50 and the mass flow at inlet €' is assigned the value
which causes the flow to become critical at the channel throat, that is, C' = 11.5.
Under these conditions, for a tolerance on the Newton iteration of 107 and

on the jump condition (5.2) of 1072, the method converges to a discontinuous
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approximation, with outlet depth specified to be 4.6, in 4 iterations on the position
of the discontinuity once the node to be placed at the discontinuity has been found.
These iterations require 11, 8, 6 and 6 Newton iterations. The initial values of the
approximation at the nodes of the original, regular grid are ¢=1( =1 ... )
and ¢ =46 ( = ... ). Once the number of the node to approximate the
jump position has been deduced, subsequent approximations to the finite element
solution use the approximation on the previous grid as the first guess in Newton’s
method to find the approximation on the new grid.

Figure 12 gives a result for -( ) ( = 4). Figure 12 is an approximation
to discontinuous flow caused by specifying the outlet depth to be 4.68; the flow
is supercritical before the jump and subcritical afterwards. The number of the
node which has been moved to the jump position is 15. Figure 12 1is the linear
interpolation of the breadth function at the grid points.

The algorithm given in this section is a method for generating an approxima-
tion to a discontinuous flow in a channel, given the energy and mass flow at inlet,
the breadth distribution and the depth at outlet. It uses a grid where all of the
nodes except one are fixed. The algorithm causes the one movable node to be
located at the position of the hydraulic jump.

In Sections 5.1.2 and 5.1.3 this method is extended and applied to a grid where

all the internal nodes are allowed to vary.

In this section the constrained ‘t” principle (2.19) is used to calculate a piecewise
linear approximation to the depth on a solution dependent grid where all the

internal grid points are allowed to move.

The domain of integration [ . ] is divided into 1 adjacent intervals by
the points ; ( =1 ... ) given by (4.10). The method is to generate finite
element approximations to the depth on each interval [ ; 4] ( =1 ... 1)

and use the jump condition at each internal node to reposition the node. Instead
of just two finite element approximations coupled at a point, as in Section 5.1.1,
there are now 1 solutions coupled at the 2 internal nodes.

Let %( )bethe finite element approximation to in the thelement,| ; ;1]

given by
)= FrroH)+ PR =1, 1 (56)
where ‘
By = e ol
Ry = B Leml 1
0 e
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With  fixed the 1 finite dimensional approximations (5.6) are calculated
on the new grid using the solution on the previous grid as the initial guess in
Newton’s method. If (5.11) is not satisfied for some in the range 1 ...  the
grid points are repositioned using (5.12). The process is repeated until (5.11)
is satisfied for all in the range 1 ... . An approximation to a discontinuous
shallow water flow has then been found.

The algorithm is applied on a domain where =0, , = 10 and the breadth

distribution is given by

(=641 - [ =21

The number of grid points = 21. The energy is taken to be 50 and the mass
flow at inlet  is given the value which causes the flow to be critical at the channel
throat, that is =11 5.

Figure 14 gives solutions for the breadth distribution go( ) ( = 2). Figure 14
shows the depth approximation for an outlet depth of 4.6. The number of the
node which is placed at the jump position is 15. Figure 14 1is the piecewise linear
interpolation to the breadth function using the 21 grid points. The position of
the 15th node has moved to be at the jump position from its initial location. The
other nodes have hardly moved, the curvature of the breadth function not being

as large as, for example, that of the breadth function given by (5.10). Given a

e o T 141






8+ 2cos %F [0 10]
nl ) =

10 [ 50] [10 15]
() = 10 + 2tanh 2 ( 8)+2tanh2(2 ) [0 10]
e 10 [ 50] [10 15]
The energy  is assigned the value 50 and the mass flow at inlet = 11 5.

Let the criterion for convergence using (5.15) be that the value of (5.15) changes
by less than 5%.

Consider a domain where the breadth is given by ;. Let the number of grid
points = 9. Then the method converges to the subcritical approximation in 11
iterations on the nodal positions, to the supercritical approximation in 3 iterations
and to a transitional approximation in 17 iterations.

The associated piecewise constant velocity approximations, calculated using

h— M are shown in Figure 15. Figure 15 shows the supercritical approxi-
mation. The grid points have not moved from their original positions given by
(4.10). The subcritical approximation is given in Figure 15 . The grid points have
moved towards the midpoint of the channel, that is, towards the region where the
curvature of the breadth is largest. Figure 15 shows an approximation to transi-
tional flow where the flow is supercritical at inlet, becomes critical at the channel
throat and then subcritical in the outlet section. Figure 15 shows the breadth
variation.

Figure 16 gives corresponding results for a grid with 41 nodes. There is a
slight node movement in the subcritical case (Figure 16 ) and none at all in the

supercritical case (Figure 16 ).
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Figure 1: One dimensional basis functions @) piecewise linear and b) piecewise

constant.

Figure 2: a) Depth approximations on a fixed grid and b) B;(x) (k = 8).
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Figure 3: a) Depth approximations on a fixed grid and b) Bs(x) v = 7.5, 0 = 1.5.

Figure 4: a) By(x) (k = 2), b) supercritical velocity and ¢) velocity potential

approximations on a fixed grid.
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Figure 5: a)Mass flow, b) velocity potential , ¢) depth and d) velocity approxima-

tions on a fixed grid — supercritical case.
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Figure 6: a)Mass flow, b) velocity potential , ¢) depth and d) velocity approxima-

tions on a fixed grid — subcritical case.
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Figure 9: Supercritical two-dimensional velocity approximation.

Figure 10: Subcritical two-dimensional velocity approximation.

35



Figure 11: Subcritical two-dimensional velocity approximations — a) [ = 15 and

b) =5

Figure 12: a) Depth approximation on grid with one moving node (d, = 4.68)
and b) B;(x) (k= 2).
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Figure 13: @) Subcritical depth approximation on an adaptive grid and b) Bs(z).
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Figure 14: a) Depth approximation on adaptive grid (d, = 4.6), b) Bo(x) (k = 2)
and ¢) depth approximation (d, = 4.0).
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Figure 15: Adaptive grid with n = 9 «a) supercritical velocity approximation, b)
subcritical velocity approximation, ¢) transitional velocity approximation and d)

Bii(x).
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Figure 16: Adaptive grid with n = 41 a) supercritical velocity approximation, b)
subcritical velocity approximation, ¢) transitional velocity approximation and d)

Bii(x).
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