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Abstract

This paper presents a direct method to determine the uncertainty in
reservoir pressure, and other functions, using the time-dependent one
phase 2- and 3-dimensional reservoir flow equations. The uncertainty
in the solution is modelled as a probability distribution function. This
is derived from probability distribution functions for input parameters
such as permeability.

The method involves a perturbation expansion about a mean of the
parameters. Coupled equations for second order approximations to the
mean at each point and field covariance of the solution, are developed
and solved numerically. This method involves only one (albeit com-
plicated) solution of the equations, and contrasts with the more usual
Monte-Carlo approach, where many such solutions are required.

The procedure is a development of earlier steady-state
two-dimensional analyses and a transient mass-balance analysis using
uncertain parameters.

These methods can be used to find the risked value of a field for a
given development scenario.

1 Introduction

Difficulty in the mathematical and numerical modeling of physical systems,
such as evaluation of the flow in underground oil reservoirs, may often arise
when a precise knowledge of data is not available. Specifically, data that is
crucial for describing the system, may only be known within certain limits of
accuracy, or it may only be possible to specify certain statistical properties of



the data. This may be due to inaccuracy in measuring equipment, or inacces-
sibility, and a high level of heterogeneity, in materials whose parameters are
involved in the model equations,

It is the effects of these latter sorts of uncertainty on the solutions of ana-
lytic and numerical systems which form the basis of this research project. The
usual approach to problems of this type is to use Monte-Carlo methods. How-




therefore treat the two-dimensional permeability field for a single realisation
as a perturbation about some pre-defined mean value field,

k= ko + aki. (3)
We assume that kg = (k) is a deterministic mean, knowledge of which is
available.
Equation (1) can then be written,
Ip
7@ - V((ko + Oékl)V(p)) = fO(rvt) + afl(rvt)v (4)

where p is the pressure solution for the specific realisation under consideration.
As in much work by Dagan, [2], and Dupuy and Schwydler, [3], we assume
the pressure solution can be expressed in a series form

N
p=>_ a"pm + Rny1, (5)

m=0
where Ry 44 is the residue due to truncating the series for N** order accuracy.
Substituting equation (5) into (4), gives

a N
’7@( Z " pr + Ry
m=0

N
— V((ko + ak)V (Z " pr + RN-|—1) = fo(r,t) + afi(r,t). (6)
m=0
If we define py to be the solution of the mean value problem, also known
as the deterministic problem,

apo

’Vﬁ - VkOVpo = f07 (7)

then, by equating successive powers of «, equation (6) can be split up into the
N + 1 set of hierarchical equations,

0
15— VkoVpo = o (8)
Op1
’Vﬁ — VkVp — Vi Vpy = fi, (9)
Opm
’YW - VkVp,, —VEVp,_1 =0, (10)



apN

’VW — VkoVpy — VE Vpn_y =0, (11)
0Nt G 4 Je =
8t — ( 0 + 1)VO(RN+1 -V 1VpN =0. (12)

This represents a set of coupled p.d.e.s for each admissible realisation. By
truncating this series at the N** term, we have imposed a level of accuracy
on the possible solutions. In a statistical sense, we are not able to solve the
N + 1" equation (12), and so these equations are of N order accuracy. It
may, of course, be possible to obtain bounds on the size of these residue terms
over all admissible realisations. This would effectively give a measure of the
accuracy of the hierarchical approximation.

2.2 Lognormal Distribution

It a Lognormal distribution function is assumed for the permeability, the ex-
pansion must be done about the geometric mean, [4]. This is equivalent to a
linear expansion about the log of the permeability.

In(k) =y = yo+ B,

where, yo = (y). So,

2,,2
b= ey°+ﬁyley°+ﬁ2y1ey°+---

= /ig—l_ﬂ/il—l_ﬂz/iQ—l_"':/ig—l_ZﬂmKTrm
m=1

where x, is the geometric mean.
Performing the same procedure, assuming the pressure has the form,

N
p= > B"Pm+ Syt

m=0

and substituting for pressure and permeability into equation (1), gives,

7@(2 B P 4 Sn1) = Vikg+ > B76km)V(D] B P + Sni1) = f(r,1).
m=0 m=1 0
(13)
Again, by equating powers of 3 we obtain the system of hierarchical equations,
0
7% — VigVpo = fo (14)
1
dIp1
’}/W — Vﬁ:ngl — VIQVpO =0 (15)
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and
n+1 n

% h( ?j h Sij) h( }j h ?ij) =0 (33)

where the () indices refer to spatial points ( A A ) in cartesian co-
ordinates, and 7 refers to the numerical solution for .( A ), where
is also in Cartesian co-ordinates.

Now let us denote a general value of the perturbation ; at a discrete point
(A A )by }, and consider the value at a second reference point, (" /).
Multiplying this into equation (32), and taking the mean values throughout
the resultant, together with equations (31) and (33)), gives,

ntl n
0 0 1
# h( sz h gij): gi; (34)
i 5! 71”04;]1 21’]’ 71%2]
A
21/]‘/ h( ?j h ?ij) 21/]'/ h( ilj h gij) = }/]‘/ lnij (35)
ntl n
2 2 17
< A = h( ?j h ;ij) h( 21]‘ h ?ij) =0 (36)

This is now a complete set of coupled (numerical) p.d.e.s that can be solved.
When these equations are being solved, simultaneously, the cross-correlation
function is found, from equation (35), and then substituted into equation
(36). In this form, it is a function of two (discretised) spatial points. The
discretised autocorrelation function of the permeability field occurs in the

21']‘/ n( 21]‘ h 6 i) terms. These are basically just linear combinations of the
autocorrelation parameters, with coefficients specifically dependent on the par-
ticular spatially-discretised scheme under consideration. The boundary condi-

tions have been incorporated into the right hand side terms of the equations.

Performing the expansion for a lognormal distribution function, about the
geometric mean, results in an extra term in the second order equation, as seen
in equation (12). In discretised form, the set of coupled numerical equations

becomes,
n+1 n
0 75 0 75 n n
A ( 1] 0 2]) 0 2y ( )
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grid-points. Equation (31) in this case becomes,

n-I—l n
0 ij 0 ij
A
0 0 0 0
oL+ Y o 4+ 9
+ 7( +21]A 5 ]) 0i+1j‘|‘7( QIJA 5 ]) 0 i-1j
(50t 9 (a+ 9
+ ]JQFIA " 0t JZIA T 01
(gt St28) (G428
SN 2 + SINE 0ij = o4y (41)
The stability condition for this deterministic scheme is
1A
5 1 (42)

In this section we present some illustrative samples of the type of results that
we have obtained using this method to solve the full statistical problem.

In each case we consider a single Fourier mode as the initial condition,
with no flow conditions around the boundary, and zero forcing function. The
region under investigation is square with unit length. All lengths and times
are normalised for the purposes of this research.

Using a single Fourier mode as the initial condition means that in the case
of a homogeneous mean value for the permeability, the solution to the p.d.e.
under consideration, equation (1), may be expressed as the Fourier mode with
an exponentially decaying amplitude,

()= "5 () (43)

It is fairly trivial to show by substitution that this is a solution to the model
equation, satisfying the zero boundary conditions. We choose this test function
as it 1s a straightforward solution whose deterministic behaviour is well-known.

The experiments performed have included using different values of | with
both constant, and spatially-varying function forms. We also tried different
sizes of variance, £, and different correlation lengths, , and ,, for the P. A.

F. Both the isotropic case, where , = and the anisotropic case, , =

Yo Y

were considered.
Typical results of evolution can be seen in Figures 6.1 to 6.3. In this case,






Figure 6.2(c) Figure 6.2(d)

Figure 6.3(a) Figure 6.3(b)

Figure 6.3(c) Figure 6.3(d)

The deterministic solution, shown only at one time value, in Figure 6.1,
behaves as expected, decaying exponentially, whilst retaining the basic shape



given by =00, and = 10. The maximum variance was seen to reach a
maximum at around = 05, thereafter gradually decreasing, with the maxi-
mum variance concentrating in the corners whilst it decays. The second order
correction to the mean, in Figures 6.3(a) to 6.3(d), begins by taking a similar
shape to the deterministic solution, on a much smaller scale, of course. This
value is much more subject to instabilities than the variance and deterministic
approximations, and we see large increases for large time values.

Compared to experiments done assuming a higher mean value, we naturally
see a correspondingly slower decay rate, for example, when = 01, the
numerical decay rate is halved. The general shape assumed by the variance and
second order approximations after one time unit are the same. The numerical
value of the variance is, however, higher due to a greater relative spread in
admissible realisations. There is a lower numerical value for  after the time
interval. This may be due to the fact that 5 is related to the decay of the
Fourier mode.

When we do experiments with a larger variance, % = 01, compared to

Figures 6.2(a) to 6.3(d), as expected, we see both the variance and the cor-
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-2



the specific point at which instabilities start to occur have yet to be done, but
it has been observed that they can certainly be shown to occur when +3
can be shown to lie outside the stability range for our scheme.
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