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Abstract

The Gauss-Newton algorithm is an iterative method regularly used for solving nonlinear
least squares problems. It is particularly well-suited to the treatment of very large scale
variational data assimilation problems that arise in atmosphere and ocean forecasting. The
procedure consists of a sequence of linear least squares approximations to the nonlinear
problem, each of which is solved by an ‘inner’ direct or iterative process. In comparison with
Newton’s method and its variants, the algorithm is attractive because it does not require the
evaluation of second-order derivatives in the Hessian of the objective function. In practice
the exact Gauss-Newton method is too expensive to apply operationally in meteorological
forecasting and various approximations are made in order to reduce computational costs and
to solve the problems in real time. Here we investigate the efiects on the convergence of the
Gauss-Newton method of two types of approximation used commonly in data assimilation.
Firstly, we examine ‘truncated’ Gauss-Newton methods where the ‘inner’ linear least squares
problem is not solved exactly, and secondly, we examine ‘perturbed’ Gauss-Newton methods
where the true linearized ‘inner’ problem is approximated by a simplifled, or perturbed,
linear least squares problem. We give conditions ensuring that the truncated and perturbed
Gauss-Newton methods converge and also derive rates of convergence for the iterations. The
results are illustrated by a simple numerical example.

Keywords Nonlinear least squares problems; approximate Gauss-Newton methods; vari-
ational data assimilation
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1 Introduction

The Gauss-Newton method is a well-known iterative technique used regularly for solving the
nonlinear least squares problem (NLSP)

min
x

`(x) =
1
2

kf(x)k2
2 ; (1)

where x is an n-dimensional real vector and f is an m-dimensional real vector function of x [9].
Problems of this form arise commonly from applications in optimal control and flltering and

in data fltting. As a simple example, if we are given m observed data (ti(1)



2.1 Statement of the algorithm

We consider the nonlinear least squares problem (NLSP) deflned in (1), where we assume that
f : Rn 7! Rm is a nonlinear, twice continuously Fr¶echet difierentiable function. We denote the
Jacobian of the function f by J(x) · f 0(x). The gradient and Hessian of `(x) are then given by

r`(x) = JT (x)f(x); (2)
r2`(x) = JT (x)J(x) + Q(x); (3)

where Q(x) denotes the second order terms

Q(x) =
mX

i=1

fi(x)r2fi(x): (4)

Finding the stationary points of ` is equivalent to solving the gradient equation

F (x) · r`(x) = JT (x)f(x) = 0: (5)

Techniques for treating the NLSP can thus be derived from methods for solving this nonlinear
algebraic system.

A common method for solving nonlinear equations of form (5) and hence for solving the
NLSP (1) is Newton’s method [9]. This method requires the inversion of the full Hessian matrix
(3) of function `. For many large scale problems, the second order terms Q(x) of the Hessian
are, however, impracticable to calculate and, in order to make the procedure more e–cient,
Newton’s method is approximated by ignoring these terms. The resulting iterative method is
known as the Gauss-Newton algorithm [9] and is deflned as follows.

Gauss-Newton Algorithm (GN)

Step 0 : Choose an initial x0 2 Rn

Step 1 : Repeat until convergence:

Step 1:1 : Solve J(xk)T J(xk)sk = ¡JT (xk)f(xk)

Step 1:2 : Set xk+1 = xk + sk:

⁄
Remarks: We note that at each iteration, Step 1:1 of the method is equivalent to solving the
linearized least squares problem

min
s

1
2

kJ(xk)s + f(xk)k2
2 : (6)

We note also that the GN method can be written as a flxed-point iteration of the form

xk+1 = G(xk) (7)

where G(x) · x ¡ J+(x)f(x) and J(x)+ · (JT (x)J(x))¡1JT (x) denotes the Moore-Penrose
pseudo-inverse of J(x).
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2.2 Convergence of the exact Gauss-Newton method

Su–cient conditions for the convergence of the Gauss-Newton method are known in the case
where the normal equations for the linearized least squares problem (6) are solved exactly in
Step 1:1 at each iteration. We now recall some existing results. The following assumptions are



3 Approximate Gauss-Newton Algorithms

A serious di–culty associated with the use of the Gauss-Newton method in large scale appli-
cations, such as data assimilation, is that the linearized least squares problem (6) is compu-
tationally too expensive to solve exactly in Step 1.1 of the algorithm at each iteration. The
dimensions of the normal matrix equations to be solved in Step 1.1 are often so great that the
system coe–cients cannot be stored in core memory, even in factored form. Therefore, in order
to solve the full nonlinear problem e–ciently, in real forecasting time, approximations must be
made within the Gauss-Newton procedure.

Two types of approximation are commonly applied. Firstly, the linearized least squares
problem (6) is solved only approximately by an ‘inner’ iteration method that is truncated before
full accuracy is reached. We refer to this approximate algorithm as the Truncated Gauss-Newton
(TGN) method . Secondly, the linearized least squares problem in Step 1.1 is replaced by an
approximate, simplifled or perturbed, linear problem that can be solved more e–ciently in the
inner loop. We refer to this algorithm as the Perturbed Gauss-Newton (PGN) method . Here we
examine both of these approximate Gauss-Newton methods and also the combined Truncated
Perturbed Gauss-Newton (TPGN) method, where both approximations are applied. In the



3.2 Perturbed Gauss-Newton method

For some applications it is desirable to apply a perturbed Gauss-Newton method in which the
true Jacobian J



3.3 Truncated Perturbed Gauss-Newton method

In the PGN method, we solve the normal equations in Step 1.1 of the algorithm at each outer
iteration k



Inexact Newton Algorithm (IN)



The convergence condition derived in this theorem is less general than that obtained in
Theorem 1, which requires a bound only on the spectral radius of the matrix Q(x)(JT (x)J(x))¡1

at the flxed point x = x⁄, rather than on its norm at each iterate xk. However, the technique
used in the proof of Theorem 4 provides a practical test for convergence and is more readily
extended to the case of the approximate Gauss-Newton iterations.

4.3 Convergence of the Truncated Gauss-Newton method (I)

We now give a theorem that provides su–cient conditions for the convergence of the truncated
Gauss-Newton (TGN) method. It is assumed that the residuals in the TGN method are bounded
such that

krkk2 • flk kr`(xk)k2 ; (23)

where fflkg is a nonnegative forcing sequence. The theorem is established by considering the
algorithm as an inexact Newton method, as in the proof of Theorem 4.

Theorem 5 Let assumptions A1. and A2. hold and let r2`(x⁄) be nonsingular. Assume that
0 • fl̂ < 1 and select flk; k = 0; 1; : : : such that

0 • flk • fl̂ ¡ °°



A10. there exists ~x⁄ 2 Rn such that ~F (~x⁄) · ~JT (~x⁄)f(~x⁄) = 0;

A20. the matrix ~J(~x⁄) at ~x⁄ has full rank n.

We then obtain the following theorem.

Theorem 6 Let assumptions A10. and A20. hold and let ~F 0(~x⁄) · ~J(~x⁄)T J(~x⁄) + ~Q(~x⁄) be
nonsingular. Assume 0 • ·̂ < 1. Then there exists " > 0 such that if kx0 ¡ x⁄k2 • " and if

°°°I ¡ ( ~J(xk)T J(xk) + ~Q(xk))( ~J(xk)T ~J(xk))¡1
°°°

2
• ·k • ·̂; k = 0; 1; : : : ; (27)

the sequence of perturbed Gauss-Newton iterates fxkg converges to ~x⁄.

Proof of Theorem 6 : We can write the PGN method as an IN method by setting

~rk = ~J(xk)T f(xk) ¡ ( ~J(xk)T J(xk) + ~Q(xk))( ~J(xk)T ~J(xk))¡1 ~J(xk)T f(xk) (28)
= (I ¡ ( ~J(xk)T J(xk) + ~Q(xk))( ~J(xk)T ~J(xk))¡1) ~J(xk)T f(xk): (29)

Then, provided the condition (27) holds, we have

k~rkk2 • ·̂
°°° ~J(xk)T f(xk)

°°°
2

; (30)

and by Theorem 3 local convergence is guaranteed.

⁄

The theorem gives explicit conditions on the perturbed Jacobian ~J that are su–cient to
guarantee the convergence of the perturbed Gauss-Newton method. The requirement is that
~J(xk)T ~J(xk) should be a good approximation to the derivative ~F 0(x) = ~J(x)T J(x) + ~Q(x) of
the perturbed gradient equation (14).

4.5 Fixed point of the Perturbed Gauss-Newton method

We now consider how close the solution ~x⁄ of the perturbed gradient equation (14) is to the
solution x⁄ of the original NLSP. To answer this question we treat the GN method as a stationary
flxed-point iteration of the form (7).

We assume that the GN iteration converges locally to x⁄ for all x0 in an open convex set D
containing x⁄ (deflned as in Theorem 1) and that G(x) satisfles

kG(x) ¡ G(x⁄)k2 • ” kx ¡ x⁄k2 ; 8 x 2 D; with ” < 1: (31)

Then we have the following theorem, which bounds the distance between the solutions of the
exact and perturbed iterations.

Theorem 7 Let assumptions A1., A2., A10. and A20. hold and assume % < 1. Let (31) be
satisfled and let ~x⁄ 2 D: Then

k~x⁄ ¡ x⁄k2 • 1
1 ¡ ”

°°°( ~J+(~x⁄) ¡ J+(~x⁄))f(~x⁄)
°°°

2
: (32)
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Proof of Theorem 7 : We deflne ~G(



Proof of Theorem 8 : We can write TPGN in the same form as IN by setting

~rk = (I ¡ ( ~J(xk)T J(xk) + ~Q(xk))( ~J(xk)T ~J(xk))¡1) ~J(xk)T f(xk)
+ ( ~J(xk)T J(xk) + ~Q(xk))( ~J(xk)T ~J(xk))¡1rk: (35)

Q



Let c be such that 1 < c < ‚=¾. Then there exists " > 0 such that, if kx0 ¡ x⁄k2 < ", the iter-
ates fxkg generated by the Gauss-Newton algorithm converge to x⁄. Additionally, the following
inequality holds

kxk



5.2 Convergence of the Truncated Gauss-Newton method (II)

By an extension of Theorem 9, we now establish alternative conditions for the truncated Gauss-
Newton (TGN) method to converge. We assume, as previously, that the residuals in the TGN
method are bounded such that

krkk2 • flk

°°J(xk)T f(xk)
°°

2
; (44)

where fflkg is a nonnegative forcing sequence.

Theorem 11 Let the conditions of Theorem 9 hold and let c be such that 1 < c < ‚=¾. Select
flk; k = 0; 1; : : : to satisfy

0 • flk • fl̂ <
‚ ¡ c¾

c(¾ + fi2)
; k = 0; 1; : : : : (45)

Then there exists " > 0 such that if kx0 ¡ x⁄k2 < ", the sequence of truncated Gauss-Newton
iterates fxkg satisfying (44) converges to x⁄. Additionally, the following inequality holds :

kxk+1 ¡ x⁄k2 • c

‚
(¾ + flk(¾ + fi2)) kxk ¡ x⁄k2 + C kxk ¡ x⁄k2

2 ; (46)

where C =
cfi°

2‚
(1 + fl̂).

Proof of Theorem 11 : The proof is by induction. Let us denote by J0, f0, J⁄ and f⁄

the quantities J(x0), f(x0), J(x⁄) and f(x⁄). From the proof of Theorem 9 (see [5, Theorem
10.2.1]), there exists a positive quantity "1 such that, if kx0 ¡ x⁄k2 < "1, then x0 2 D, JT

0 J0 is
nonsingular,

°°(JT
0 J0)¡1

°°
2

< c=‚, and

°°x0 ¡ (JT
0 J0)¡1JT

0 f0 ¡ x⁄°°
2

• c¾

‚
kx0 ¡ x⁄k2 +

cfi°

2‚
kx0 ¡ x⁄k2

2 : (47)

Let

" = min

(
"1;

‚ ¡ c(¾ + fl̂(¾ + fi2))

cfi°(1 + fl̂)

)
; (48)

where ‚ ¡ c(¾ + fl̂(¾ + fi2)) > 0 by (45).



Gathering the partial results (47) and (51), we obtain

kx1 ¡ x⁄k2 =
°°x0 ¡ (JT

0 J0)¡1JT
0 f0 + (JT

0 J0)¡1r0 ¡ x⁄°°
2

• °°x0 ¡ (JT
0 J0)¡1JT

0 f0 ¡ x⁄°°
2

+ kr0k2

°°(JT
0 J0)¡1

°



We remark that Theorem 12 establishes the convergence of the PGN method to the flxed
point x⁄ of the exact Gauss-Newton method. At the flxed point, the perturbed Jacobian ~J
must, therefore, be such that ~J(x⁄)T f(x⁄) = 0 in order to be able to satisfy the conditions of
the theorem; that is, at the flxed point x⁄, the null space of ~J(x⁄)T must contain f(x⁄). In
contrast the convergence results of Theorem 6 only require that a point ~x⁄ exists such that
~J(~x⁄)T f(~x⁄) = 0 and ~J(~x⁄) is full rank.

5.4 Convergence of the Truncated Perturbed Gauss-Newton method (II)

In the following theorem we consider the truncated perturbed Gauss-Newton iteration where an
approximate Jacobian ~J is used and the inner linear least squares problem (15) is not solved
exactly on each outer step. The residuals in the inner normal equations at each outer iteration
are assumed to be bounded such that

krkk2 • flk

°°° ~J(xk)T f(xk)
°°°

2
; (57)

where fflkg is a nonnegative forcing sequence. Su–cient conditions for the TPGN method to
converge are then given as follows.

Theorem 13 Let the conditions of Theorem 9 hold and let ~J(x) be an approximation to J(x).
Let c be such that 1 < c < ‚=¾. Assume that ·k • ·̂ < (‚ ¡ c¾)=(c(¾ + fi2)) and select
flk; k = 0; 1; : : : such that

0 • flk • (·k

°°J(xk)T f(xk)
°°

2
¡

°°°J(xk)T J(xk)(J+(xk) ¡ ~J+(xk))f(xk)
°°°

2
)

¢
‡°°°J(xk)T J(xk)( ~J(xk)T ~J(xk))¡1

°°°
2

°°° ~J(xk)T f(xk)
°°°

2

·¡1
; (58)

for k = 0; 1; : : :. Then there exists " > 0 such that if kx0 ¡ x⁄k2 < ", the sequence of per-
turbed Gauss-Newton iterates fxkg satisfying (57) converges to x⁄. Additionally, the following
inequality holds :

kxk+1 ¡ x⁄k2 • c

‚
(¾ + ·k(¾ + fi2)) kxk ¡ x⁄k2 + C kxk ¡ x⁄k2

2 ; (59)

where C = cfi°(1 + ·̂)=(2‚).

Proof of Theorem 13 : The TPGN iteration takes the form xk+1 = xk + sk, where sk =
¡ ~J+(xk)f(xk) + ( ~J(xk)T ~J(xk))¡1rk. Therefore, using the notation of Theorem 11, we may
consider the TPGN method as a truncated Gauss-Newton method with the residual deflned as

~rk = J(xk)T J(xk)(J+(xk) ¡ ~J+(xk))f(xk) + J(xk)T J(xk)( ~J(xk)T ~J(xk))¡1rk: (60)

Then, provided the condition (57) holds, we have

k~rkk2 •
°°°J(xk)T J(xk)(J+(xk) ¡ ~J+(xk))f(xk)

°°°
2

+
°°°J(xk)T J(xk)( ~J(xk)T ~J(xk))¡1

°°°
2

flk

°°° ~J(xk)T f(xk)
°°°

2

• ·k

°°J(xk)T f(xk)
°°

2
: (61)

The conclusion then follows from Theorem 11.

⁄
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We remark that to ensure flk ‚ 0, we require that the relation given by equation (55) holds.
This is simply the condition of Theorem 12 that guarantees the convergence of the PGN method
in the case where the inner loop is solved exactly without truncation.

Theorem 13 gives conditions for the truncated perturbed Gauss-Newton method to converge
to the flxed point x⁄ of the exact Gauss-Newton method, and is therefore more restrictive
than the theorem developed in Section 4. Here the allowable form of the perturbed Jacobian
is constrained to satisfy ~J(x⁄)T f(x⁄) = J(x⁄)T f(x⁄) = 0 in order that the conditions of the
theorem may be met. The theorem does, however, establish that the method converges with
rates of convergence higher than linear in certain cases. These cases are discussed in the next
subsection.

5.5 Rates of convergence of the approximate Gauss-Newton methods

>From Theorems 11, 12 and 13, the expected convergence rates of the approximate Gauss-
Newton methods may be established for various cases. The convergence rates are shown in (46),
(56) and (59) for the truncated Gauss-Newton, the perturbed Gauss-Newton and the truncated
perturbed Gauss-Newton methods, respectively. These rates are dependent on the parameters
¾; ‚ and fi, deflned as in Theorem 9, and can be contrasted directly with the convergence rates
of the exact Gauss-Newton method, given by (37). We observe the following.

1. Linear convergence. The theorems show that in general the GN, TGN, PGN and TPGN
methods converge linearly. In comparison with the exact GN algorithm, we see that the
price paid for the inaccurate solution of the linear least squares problem in the inner step
of the approximate methods is a degradation of the local linear rate of convergence.

2. Super-linear convergence. As previously noted, if ¾ = 0, which holds, for example, in the
zero-residual case where f(x⁄) = 0, the convergence of the exact GN method is quadratic.
In this same case, if ¾ = 0 and if the forcing sequence fflkg satisfles limk!+1 flk = 0,
then the convergence rates of the TGN and TPGN methods are super-linear. For the
PGN method to converge super-linearly in this case, the sequence f·kg must satisfy
limk!+1 ·k = 0.

3. Quadratic convergence. From the proof of Theorem 11, we see that the convergence of the
TGN method is quadratic if ¾ = 0 and if the normal equation residual is such that

krkk2 · °°J(xk)T J(xk)sk + J(xk)T f(xk)
°°

2
• C1

°°J(xk)T f(xk)
°°2

2
;

for some positive constant C1. Similarly, in the case ¾ = 0, the PGN method converges
quadratically if

°°°J(xk)T J(xk)
‡

J+(xk) ¡ ~J+(xk)
·

f(xk)
°°°

2
• C2

°°J(xk)T f(xk)
°°2

2
;

as does the TPGN method in this case if
°°°(J(xk)T J(xk))((J(xk)+ ¡ ~J(xk)+)f(xk) + ( ~J(xk)T ~J(xk))¡1rk)

°°°
2

• C3

°°J(xk)T f(xk)
°°2

2
;

for positive constants C2; C3.

4. Efiect of nonlinearity. °



of the nonlinearity and the residual size in the problem, we see therefore that, in order
to guarantee convergence of the approximate methods, the inner linearized equation must
be solved more accurately when the problem is highly nonlinear or when there is a large
residual at the optimal.

In Section 6 we give numerical results demonstrating the convergence behaviour of the ap-
proximate Gauss-Newton methods. The rates of convergence of the approximate methods are
also illustrated for various cases.

5.6 Summary

In this section we have established theory ensuring local convergence of the Gauss-Newton, the
truncated Gauss-Newton, the perturbed Gauss-Newton and the truncated perturbed Gauss-
Newton methods based on the theory of [5] for exact Gauss-Newton methods. The conditions
for convergence derived in this section are more restrictive than those of Section 4, but enable
the rates of convergence to be established. Numerical examples illustrating the results for the
three approximate Gauss-Newton methods are shown in the next section.

6 Numerical example

We examine the theoretical results of Sections 4 and 5 using a simple initial value problem
discretized by a second-order Runge-Kutta scheme. The example is based on that in [7, Chapter
4] and is used because it provides a clear way of producing a perturbed Jacobian. We consider
the ordinary difierential equation

dz

dt
= z2; (62)

where z = z(t) and z(0) = z0 is given. Application of a second order Runge-Kutta scheme gives
a discrete nonlinear model

xn+1 = xn + (xn)2¢t + (xn)3¢t2 +
1
2

(xn)4¢t3; (63)

where ¢t denotes the model time step and xn … z(tn) at time tn = n¢t. We deflne a least
squares problem

min
x0

`(x) =
1
2

(x0 ¡ y0)2 +
1
2

(x1 ¡ y1)2 (64)

subject to (63), where y0; y1 are values of observed data at times t0; t1. This is of the same
form as (1), with

f =
µ

x0 ¡ y0

x1 ¡ y1

¶
: (65)

Then the Jacobian of f is given by

J0 y1
1; y2; yt



Table 1: Perfect observations, exact Jacobian
† Iterations Error Gradient

0.00 5 0.000000e+00 0.000000e+00
0.25 20 9.015011e-14 1.364325e-13
0.50 37 7.207568e-13 1.092931e-12
0.75 84 2.246647e-12 3.407219e-12
0.90 210 8.292034e-12 1.257587e-11
0.95 401 1.857048e-11 2.816403e-11
1.00 1000 3.143301e-04 4.765072e-04
1.05 431 2.652062e-02 3.880614e-02
1.10 231 5.357142e-02 7.568952e-02
1.15 163 8.101821e-02 1.106474e-01
1.20 130 1.093852e-01 1.444877e-01
1.25 112 1.394250e-01 1.781241e-01

We now use this example to test some of the theorems we have derived in Section 4. For the
experiments the true value of x0 is set to be ¡2:5 and we begin with an initial estimate of ¡2:3.
Observations are generated using the truth at the initial time t0 and using the discrete numerical
model (63) to calculate the ‘truth’ at time t1. The time step is set to be ¢t = 0:5. We begin by
testing the convergence of the TGN algorithm.

6.1 Truncated Gauss-Newton method - numerical results



Table 2: Imperfect observations, exact Jacobian
† Iterations Error Gradient

0.00 10 4.440892e-15 7.778500e-15
0.25 17 9.503509e-14 1.806853e-13
0.50 32 6.181722e-13 1.176347e-12
0.75 66 1.671552e-12 3.180605e-12
0.90 128 4.250822e-12 8.088735e-12
0.95 181 6.231016e-12 1.185694e-11
1.00 359 1.052936e-11 2.003732e-11
1.05 157 6.324736e-02 1.093406e-01
1.10 116 8.697037e-02 1.452842e-01
1.15 93 1.103473e-01 1.783861e-01
1.20 79 1.336149e-01 2.092708e-01
1.25 69 1.570351e-01 2.384890e-01



If we apply the second order Runge-Kutta scheme to this equation, we obtain

–xn+1 = (1 + 2xn¢t + 3(xn)2¢t2 + 3(xn)3¢t3 +
5
2

(xn)4¢t4 + (xn)5¢t5)–xn: (71)

Thus for the example we obtain the perturbed Jacobian

~J(x0) =
µ

1
1 + 2x0¢t + 3(x0)2¢t2 + 3(x0)3¢t3 + 5

2(x0)4¢t4 + (x0)5¢t5

¶
: (72)

Using this perturbed Jacobian we apply the PGN algorithm on our example, where on each
iteration we conflrm that the su–cient condition (27) is satisfled. For this example we flnd that
that the second order terms ~Q are given by

~Q(x0) = (x0 + (x0)2¢t + (x0)3¢t2 +
1
2

(x0)4¢t3 ¡ y1) ¢
(2¢t + 6x0¢t2 + 9(x0)2¢t3 + 10(x0)3¢t4 + 5(x0)4¢t5): (73)

For the case in which we have perfect observations we flnd that (27) is satisfled on each
iteration and the PGN method converges to the true solution in 18 iterations. When error
is added on to the observations, as in the previous section, the PGN method converges in 9
iterations and again we flnd that the condition for convergence is always satisfled. This time
the converged solution is not the same as that of the exact Gauss-Newton method. The solution
difiers from the true solution x0 = ¡2:5 by approximately 0:01.

In order to examine a case in which the su–cient condition (27) is not satisfled on each
iteration, we change the time step to ¢t = 0:6, keeping all other parameters of the problem the
same as before. For the case of perfect observations the PGN converges to the correct solution
in 23 iterations, compared to 5 iterations for the exact GN and 6 iterations for the Newton
method. We flnd that the condition for convergence is satisfled on each iteration, with the
maximum value of the left hand side of (27) reaching 0:994. However, when error is present on
the observed values, the convergence condition fails by the second iteration and we flnd that the
PGN fails to converge in 1000 iterations. For this case the exact GN, using the true Jacobian,
converges to the correct solution in 8 iterations.

6.3 Truncated Perturbed Gauss-Newton method - numerical results

Finally in this section we consider the case in which the perturbed Gauss-Newton method is
also truncated. Following the same method as in the previous two sections, we solve on each
iteration the approximate equation

~J(x0
k)T ~J(x0

k)sk = ¡ ~J(x0
k)T f(x0

k) + rk; (74)

where we choose the residual rk. We choose

rk = †

ˆ
fl̂ ¡ j1 ¡ ( ~J(xk)T J(xk) + ~Q(xk))( ~J(xk)T ~J(xk))¡1j

j( ~J(xk)T J(xk) + ~Q(xk))( ~J(xk)T ~J(xk))¡1j

!
jr`(x0

k)j; (75)

where †



Table 3: Imperfect observations, inexact Jacobian
† Iterations Error Residual

0.00 21 8.215650e-14 6.693951e-14
0.25 33 4.911627e-13 4.007662e-13
0.50 56 1.217249e-12 9.930633e-13
0.75 121 3.732126e-12 3.044658e-12
0.90 306 1.105871e-11 9.021988e-12
0.95 596 2.444178e-11 1.993989e-11
1.00 1000 1.260007e-01 9.382085e-02
1.05 90 1.714365e+00 1.765471e+00
1.10 53 1.842029e+00 1.934063e+00
1.15 36 1.940084e+00 2.069636e+00
1.20 25 2.019233e+00 2.184031e+00
1.25 23 2.085381e+00 2.283791e+00

show the convergence results for the TPGN method using various levels of truncation. The third
column now shows the difierence between the TPGN solution and the exact Newton method
applied to the perturbed problem, and the fourth column gives the residual in the perturbed
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Figure 1: Convergence rates for the cases of (a) exact Jacobian and (b) perturbed Jacobian for
the zero residual case. The solid line is for no truncation, the dashed line for constant truncation
and the dotted line in plot (a) is for variable truncation.

7 Conclusions

We have described here three approximate Gauss-Newton methods, the truncated, the perturbed
and the truncated perturbed Gauss-Newton methods, for solving the nonlinear least squares
problem (NLSP). We have derived conditions for the convergence of these approximate methods
by treating them as inexact Newton methods, following the theory of [4]. More restricted
convergence results, including rates of convergence, have also been derived for the approximate
methods by extending the theory of [5] for the exact Gauss-Newton method. In practice, the
approximate Gauss-Newton methods are used to treat very large data assimilation problems
arising in atmosphere and ocean modelling and prediction. The convergence properties of these
algorithms have not previously been investigated. We show by a simple numerical example that
the bounds established by the theory are precise, in a certain sense, and that the approximate
methods are convergent if the conditions of the theory hold.
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