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Abstract

Recently Roe ��� has suggested solving systems of 	rst order conser


vation laws numerically and simultaneously adapting the computational

grid using a least squares minimisation procedure on the �uctuations to


gether with a steepest descent iteration approach to solve the resulting

minimisation problem� In this report� the procedure is repeated for the

Cauchy
Riemann system written in complex form and suggestions made

for other possible functionals to be minimised in the scalar case� In each

case� steepest descent updates are written explicitly for simple choices of

the functional�

�This work has been carried out as part of the Oxford�Reading Institute for Computational

Fluid Dynamics and was funded by EPSRC�
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� Introduction

The problem which will be addressed in this brief report is the minimisation of

the functional

F �
�

�

X
T

�
T

TQT �T � �����

This quantity arises from the numerical solution of systems of �rst order con�

servation laws via least squares minimisation of the associated �uctuations �
T
	

The sum in ��	�� is taken over the grid cells �T � of a triangulated computational

domain and the QT are positive de�nite symmetric matrices	 The �
T
will be

de�ned precisely later in this report and the QT will be chosen appropriately for

each case considered	

F



� Split Scalar Fluctuations

Consider the steady state linear advection equation in two dimensions


�a � �ru �  � �����

where the advection velocity �a � �a� b�T is constant over the whole domain	

Alternatively
 in any case where �a is divergence�free
 equation ��	�� can be written

as

�r � �f �  where �f � u�a � �����

The �uctuation in a triangle T associated with ��	�� is given by

�T � �
Z Z

�
�a � �ru dxdy

�
I
��

u�a � d�n � ��	��

where �n represents the inward pointing normal to the boundary of the cell	 Under

the assumption that u varies linearly over each triangle and its approximation is

continuous across the cell edges the discrete �uctuation is evaluated to be

�T �
�X

k��

�

�
�ui � uj��a � �nk

�
�X

k��

��

�
��a � �nk�uk � ��	��

where k is a vertex of the triangle �i and j are the other two� and �nk is the normal

to the edge opposite vertex k scaled by the length of that edge	

In ��� �T is considered as a single scalar quan



The simple choice of QT � �

ST
I
 where ST is the area of the triangle gives

F �
X
T

���T �
� � ���T �

� � ���T �
�

�ST
�
X
T

FT � �����

and the individual element contributions to this sum can be written

�FT



where ���� indicates the positive part
 so that only contributions to the �uctuation

from in�ow edges are considered in the minimisation of F ��	��	

One further option is to de�ne the �uctuation within each triangle to be

dependent only on perturbations of the variables at the upwind vertices
 so if the

upwind vertices of a chosen cell are � and � then

��
T

�
��

T

�u�
�u� �

��
T

�u�
�u� ������

and there is no dependence on �u�	 E�ectively
 the �uctuation is rede�ned to be

independent of the variables at the dowstream vertices	 The disadvantage of the

resulting scheme
 and of the process of allowing only upwind cells to contribute to

the least squares iteration at a node
 is that the stencil for the update to a node

may change at each iteration
 leading to a discontinous change in the de�nition

of F between iterations which may even increase its value	 Note that it is more

likely that upwinding would be used on the solution variables rather than the

grid variables since the former arises from a hyperbolic di�erential equation	

It may also be possible to combine the ideas behind ��	�� and ��	��� by

de�ning an update of the form

��
T

�
���

T

�u�
�u� �

���
T

�u�
�u� �

���
T

�u�
�u� � ������

where the �kT is the kth component of a vector such as ��	��	 This does not

discount the possibility of discontinuities in the resulting de�nition of the func�

tional being minimised but does allow more �exibility in the upwinding of the

algorithm	

Also
 the suggestion for splitting �T in ��	�� is not unique	 Another choice


for example
 might be to divide the �uctuation into components proportional to

those derived from multidimensional �uctuation distribution schemes ���	 This

would lead to di�eren





leads directly to the Cauchy�Riemann equations


�� � �p
��M�

� UX � VY � 

	� � 	 � VX � UY �  � ��	��

In ��� ��	�� was kept as a system of equations with real coe�cients and the �uc�

tuation was evaluated as

�
T

� �
Z Z

�
FX �GY dxdy

�
I
��

�F �G� � d�n � ��	��

where F � �U� V �T and



where �a � ��� i�T and W is de�ned in ��	��	 Note that ��	��� bears a striking

resemblance to the scalar advection equation ��	�� although the coe�cients are

now complex	

Equations ��	�� and ��	��� are integrated to give the complex �uctuation

�T � �
Z Z

�
�r � �f dxdy

�
I
��

�f � d�n

�
I
��

W �a � d�n � ��	���

and the assumption that U and V both vary linearly over each triangle leads to

the discrete form of the �uctuation which is given by

�T �
�X

k��

��

�
��a � �nk�Wk



and the fact that

�T � ��

�

�X
k��

��Vk�kY � Uk�kX� � i�Uk�kY � Vk�kX��
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