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Abstract



networks in the 1940ies [1{8]. One particular neuron model with certain physiological
signi�cance is the leaky integrator unit [2, 3, 5{8] described by the ODEs

(1) �
dui(t)
dt

+ ui(t) =
NX
j=1

wij f(uj(t)) :

Here ui(t) denotes the time-dependent membrane potential of the ith neuron in a network
of N units with synaptic weights wij . The nonlinear function f describes the conversion of
the membrane potential ui(t) into a spike train ri(t) = f(ui(t)), and is called the activation
function.

The left-hand-side of Eq.(1) describes the intrinsic dynamics of a leaky integrator unit,
i.e. an exponential decay of membrane potential with time constant � . The right-hand-
side of Eq.(1) represents the net-input to unit i: the weighted sum of activity delivered
by all units j that are connected to unit i (j ! i). Therefore, the weight matrix W =
(wij) comprises three di�erent kinds of information: (1) unit j is connected to unit i if
wij 6= 0 (connectivity, network topology), (2) the synapse j ! i is excitatory (wij > 0),
or inhibitory (wij < 0), (3) the strength of the synapse is given by jwij j.

For the activation function f , essentially two di�erent approaches are common. On
the one hand, a deterministic McCulloch-Pitts neuron [1] is obtained from a Heaviside
step function

(2) f(s) :=
�

0; s < �
1; s � �

for s 2 R with an activation threshold � describing the all-or-nothing-law of action po-
tential generation. Supplementing Eq.(1) with a resetting mechanism for the membrane
potential, the Heaviside activation function provides a leaky integrate and �re neuron



Starting with the leaky integrator network equation (1), the sum over all units is
replaced by an integral transformation of a neural �eld quantity u(x; t), where the contin-
uous parameter x 2 Rm now indicates the position i in the network. Correspondingly, the
synaptic weight matrix wij turns into a kernel function w(x; y). Then, Eq.(1) assumes the
form of a neural �eld equation as discussed in [10,11]

(4) �
@u(x; t)
@t

� u(x; t) =
Z

Rm

w(x; y)f(u(y; t)) dy; x 2 Rm; t > 0

with initial condition

(5) u(x; 0) = u0(x); x 2 Rm :

Up to now, neural �eld equations have been investigated under serious restrictions
upon the integral kernel w(x; y), including homogeneity (w(x; y) = w(x�y)) and isotropy
(w(x; y) = w(jx�yj)). In these cases, the technique of Green’s functions allows the deriva-
tion of PDEs for the neural waves u(x; t) assuming special kernels such as exponential,
locally uniform or \Mexican hat" functions [13, 14, 18, 23, 26]. Solutions for such neural
�eld equations have been obtained for macroscopic, stationary neurodynamics in order to
predict spectra of the electroencephalogram (EEG) [14,17,19,22], or bimanual movement
coordination patterns [12,13].

By contrast, heterogeneous kernels and thalamo-cortical loops in addition to homoge-
neous cortico-cortical connections have been discussed in [16] and [17,19,25], respectively.
However, at present there is no universal neural �eld theory available, that would allow the
study of �eld equations with general synaptic kernel functions. Yet such a theory would
be mandatory for modeling mesoscopic and transient neurodynamics as is characteristic,
e.g., for cognitive phenomena.

Our goal is hence to develop a mathematical theory of neural �elds starting with the
typical example of leaky integrator �eld equations. We expect that our analysis will serve
as a model for various variations and generalizations of neural �eld equations which are
currently being investigated for applications in the �eld of cognitive neurodynamics [27].

In this paper we shall examine the solvability of the integro-di�erential equation (4)
with tools from functional analysis, the theory of ordinary di�erential equations and in-
tegral equations. We will provide a proof of global existence of solutions and study their
properties in dependence on the smoothness of the synaptic kernel function w and the
smoothness of the activation function f .

2 The neural �eld equation

For studying the existence of solutions of the neural �eld equation (4) we de�ne the
operator

(6) (Fu)(x; t) :=
1
�

�
�u(x; t) +

Z
Rm

w(x; y)f(u(y; t)) dy
�
; x 2 Rm; t > 0:
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Figure 1: We show the setting for the neural �eld equation (4) for the case m = 1. The
potential u(x; t) is depending on space x 2 Rm and time t � 0. Here, a pulse is travelling
in the x-direction when time increases. The plane indicates the cut-o� parameter � in
the activation function f . Only a �eld u(x; t) � � will contribute to the increase of the
potential.

Then the neural �eld equation (4) can be reformulated as

(7) u0 = Fu;

where u0 denotes the derivative of u with respect to the time variable t. For later use we
also de�ne the operators

(8) (Au)(x; t) :=
Z t

0
(Fu)(x; s) ds; x 2 Rm; t > 0;

and

(9) (Ju)(x; t) :=
1
�

Z
Rm

w(x; y)f(u(y; t)) dy; x 2 Rm; t > 0:

To de�ne appropriate spaces and study the mapping properties of the operators F and
A we need to formulate conditions on the synaptic weight kernel w and the activation
function f in the neural �eld equation. Here, we will study two classes of functions f .

The �rst class contains smooth functions f . In this case we can employ tools from the
classical theory of ordinary di�erential equations to obtain existence results.

The second class works with non-smooth functions f , as for example when f is a Heav-
iside jump function. In this case the above theory is not applicable and we will construct
counterexamples. We will study the existence problem by investigating particular kernels
w which allow particular solutions.
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Proof. We �rst note that the term Ju de�ned in (9) can be estimated by

(18)
���(Ju)(x; t)

��� � Cw
�

Next, we observe that the derivative u0(t) in the neural �eld equation is bounded by

(19) u0(x; t) � �bu(x; t) + c; u0(x; t) � �bu� c

with b = 1=� and c = Cw=� . Thus, the value of u(t) will be bounded by the solution to
the ordinary di�erential equation (77) with a = u0(x), b = 1=� and c = Cw=� . According
to Lemma 4.1 the bound is given by Ctot de�ned in (16). This proves the estimate (17).
�

2.2 The NFE with a smooth activation function f

Here, for the function f : R! R we assume that

(20) f 2 BC1(R);

With the conditions (10) to (14) we now obtain the following mapping properties of
the neural �eld operator F .

Lemma 2.3. The operator F de�ned by (6) with kernel w and activation function f
which satisfy the conditions of De�nition 2.1 and (20) is a bounded nonlinear operator
on BC(Rm)� C1(R+

0 )



Since u(x; t) is continuous in x we obtain the continuity of Fu in x. Finally, we need to
show that Fu is continuously di�erentiable with respect to the time variable. This is clear
for the �rst term �u(x; t)=� . The time-dependence of the integral

(22) (Ju)(x; t) :=
Z

Rm

w(x; y)f(u(y; t)) dy

is implicitly given by the time-dependence of the �eld u(y; t). By assumption we know
that u(x; �) 2 C1(R+

0 ) and the function f is BC1(R). Then via the chain rule we derive

d

dt
f(u(y; t)) =

df(s)
ds

���
s=u(y;t)

� @u(y; t)
@t

:

Since f 0 is bounded on R and w is integrable we obtain the di�erentiability of the integral
with the derivative

(23)
@Ju

@t
(x; t) =

Z
Rm

w(x; y)
ndf
ds

(u(y; t)) � @u
@t

(y; t)
o
dy; t > 0:

The function @Ju=@t(x; t) depends continuously on t 2 R+ due to the continuity of df=ds
and du=dt in t and the term (23) is bounded for t � 0 and x 2 Rm. This completes the
proof. �

By integration with respect to t we equivalently transform the neural �eld equation
(4) or (7), respectively, into a Volterra integral equation

(24) u(x; t) = u(x; 0) +
Z t

s=0
(Fu)(x; s) ds; x 2 Rm; t > 0;

which, with A de�ned in (8), can be written in the form

(25) u(x; t) = u(x; 0) + (Au)(x; t); x 2 Rm; t > 0:

Lemma 2.4. The Volterra equation (24) or (25), respectively, is solvable on Rm � (0; �)
for some � > 0 if and only if the neural �eld equation (4) or (7), respectively, is solvable
for x 2 Rm and t 2 (0; �). In particular, solutions to the Volterra equation (24) are in
BC1(R+

0 ).

Proof. If the neural �eld equation is solvable with some continuous function u(x; t),
we obtain the Volterra integral equation (24) for the solution u by integration.

To show that a solution u(x; t) to the Volterra integral equation (24) in BC(Rm) �
BC(R+

0 ) satis�es the neural �eld equation (4) we �rst need to ensure su�cient regularity,
since solutions to equation (4) need to be di�erentiable with respect to t. We note that
the function

gx(t) :=
Z t

0
(Fu)(x; s) ds; t > 0
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is di�erentiable with respect to t with continuous derivative for each x 2 Rm. Thus,
the solution u(x; t) to equation (24) is continuously di�erentiable with respect to t > 0
and the derivative is continuous on [0;1). Now, the derivation of (4) for u from (24) is
straightforward by di�erentiation. �

An important preparation for our local existence study is the following lemma. We
need an appropriate local space, which for � > 0 is chosen as

(26) X� := BC(Rm)�BC([0; �]):

The space X� equipped with the norm

(27) kuk� := sup
x2Rm;t2[0;�]

ju(x; t)j

is a Banach space. For � =1 we denote this space by X, i.e.

X := BC(Rm)�BC(R+
0 );

kukX := sup
x2Rm;t2R+

0

ju(x; t)j:(28)

An operator ~A from a normed space X into itself is called a contraction, if there is a
constant q with 0 < q < 1 such that

(29) k ~Au1 � ~Au2k � qku1 � u2k

is satis�ed for all u1; u2 2 X. A point u� 2 X is called �xed point of ~A if

(30) u� = ~Au�

is satis�ed. We are now prepared to study the properties of A on X�.

Lemma 2.5. For � > 0 chosen su�ciently small, the operator A is a contraction on the
space X� de�ned in (26).

Proof. We estimate Au1�Au2 and abbreviate u := u1�u2. We decompose A = A1+A2

into two parts with the linear operator

(31) (A1v)(x; t) :=
�1
�

Z t

0
v(x; s) ds; x 2 Rm; t > 0;

and the nonlinear operator

(32) (A2v)(x; t) :=
�1
�

Z t

0

Z
Rm

w(x; y)f(v(y; s)) dy ds; x 2 Rm; t > 0:
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We can estimate the norm of A1 by

(33) kA1uk� �
�

�
kuk�;

which is a contraction if � is su�ciently small. Since f 2 BC1(R) there is a constant L
such that

(34)
���f(s)� f(~s)

��� � Ljs� ~sj; s; ~s 2 R:

This yields���Ju1(x; t)� Ju2(x; t)
��� � 1

�

Z
Rm

jw(x; y)j
���f(u1(y; t))� f(u2(y; t))

��� dy
� 1

�
L

Z
Rm

jw(x; y)j
���u1(y; t)� u2(y; t)

��� dy
� 1

�
LCwku1 � u2k1:(35)

Finally, by an integration with respect to t we now obtain the estimate

(36) kA2u1 �A2u2k� �
�

�
LCwku1 � u2k1:

For � su�ciently small the operator A2 is a contraction on the space X�. For

(37) q :=
�

�
(1 + LCw) < 1

the operator A = A1 +A2 is a contraction on X�. �

Now, the local existence theorem is given by the following theorem.

Theorem 2.6 (Local existence for NFE). Assume that the synaptic weight kernel w and
the activation function f satisfy the conditions of De�nition 2.1 and (20) and let � > 0 be
chosen such that (37) is satis�ed with L being the Lipschitz constant of f . Then we obtain
existence of solutions to the neural �eld equations on the interval [0; �].

Remark. The result is a type of Picard-Lindel�of theorem for the neural �eld equation
(4) under the conditions of De�nition 2.1 and (20).

Proof. We employ the Banach Fix-Point Theorem to the operator equation (25). We
have shown that the operator A is a contraction on X� de�ned in (26). Then, also the
operator ~Au := u0+Au is a contraction on the complete normed space X�. Now, according
to the Banach �xpoint theorem the equation

(38) u = ~Au
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as a short form of the Volterra equations (25) or (24), respectively, has one and only one
�xpoint u�. This proves the unique solvability of (24). Finally, by the equivalence Lemma
2.4 we obtain the unique solvability of the neural �eld equation (4) on t 2 [0; �]. �

In a last part of this section we combine the global estimates with local existence to
obtain a global existence result.

Theorem 2.7 (Global existence of solutions to NFE). Under the conditions of De�nition
2.1 we obtain existence of global bounded solutions to the neural �eld equation.

Proof. We �rst remark that the neural �eld equation does not explicitly depend on
time. As a result we can apply the local existence result with the same constant � to any
interval [t0; t0 + �] � R when initial conditions u(x; t0) = u0 for t = t0 are given. This
means we can use Theorem 2.6 iteratively.

First, we obtain existence of a solution on an interval I0 := [0; �] for

(39) � :=
�

2(1 + LCw)
:

Then, the function u1(x) := u(x; �) serves as new initial condition for the neural �eld
equation on t > � with initial conditions u1 at t = �. We again apply Theorem 2.6 to this
equation to obtain existence of a solution on the interval I1 = [�; 2�].

This process is continued to obtain existence on the intervals In := [n�; (n + 1)�],
n 2 N, which shows existence for all t 2 R. Global bound for this solution have been
derived in Lemma 2.2. �

2.3 The NFE with a Heaviside activation function f

In this section we will construct special solutions to the neural �eld equation in the case of
an activation function f given by Eq.(2). In this case the results of the preceding sections
are no longer applicable. We will develop speci�c methods to analyse the solvability of
the equation for this particular case.

We �rst show that for the activation function f de�ned in (2), the operator F does
not longer depend continuously on the function u.

Lemma 2.8. With f given by (2), w according to De�nition 2.1 and the additional condi-
tion (15) for the kernel the function Fu does not depend continuously on u 2 X with X
de�ned in (28).

Proof. Consider the sequence (un)n2N of functions un 2 X with

(40) un(x; t) :=

8>>>><>>>>:
0; x � �2
(� � 1

n) � (2 + x) x 2 (�2;�1)
� � 1

n ; x 2 [�1; 1]
(� � 1

n) � (2� x) x 2 (1; 2)
0; x � 2;

10



(a)

Figure 2: In (a) we show a function un which is used to prove the non-continuity of the
operator F for a Heaviside-type activation function f in the neural �eld equation.

for x 2 R and t � 0, compare Figure 2. The function u is de�ned by (40) with n = 1,
where we use 1=1 = 0. Then un ! u for n ! 1 in X. For all n 2 N we have
Fun = �un=� , since f(un(y; t)) = 0 for y 2 Rm and t � 0. However, we calculate

(41) (Fu)(x; t) =
�1
�
u(x; t) +

1
�

Z
[�1;1]

w(x; y)dy| {z }
=:J(x)

:

Thus, we have

(42) lim
n!1

�
Fun(x; t)� Fu(x; t)

�
= J(x); x 2 R;

i.e. for general kernels w(x; y) where J(x) 6� 0 the operator F is not continuous. �

Remark. As a consequence of Lemma 2.8 the operator A is not a contraction on X�

for any � > 0, since���Aun(t)�Au(t)
��� =

����1
�

Z t

0

�
un(x; s)� u(x; s)

�
ds

+
Z t

0

Z
R
w(x; y)

�
f(un(y; s))� f(u(y; s))

�
dy ds

���
!

���J(x)
���t; n!1;(43)

where J(x) is given by (41).

Since the operator A does not depend Lipschitz continuously on u, we need to use
techniques di�erent from the Banach �xpoint theorem above. Here, we will develop an
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approach based on compactness arguments to carry over the existence results from above
to the non-smooth Heaviside activation function f . To this end we de�ne the H�older space

(44) X�;� := BC�(Rm)�BC�([0; �])

for � 2 (0; 1] equipped with the H�older norm

k’k�;� := k’k� + sup
t2[0;�];x;y2Rm

j’(x; t)� ’(y; t)j
jx� yj�

+ sup
x2Rm;t;s2[0;�]

j’(x; t)� ’(x; s)j
jt� sj�

(45)

It is well known that the H�older space on a compact set M is compactly embedded into
the space BC(M). However, for unbounded sets like the space Rm this is not the case.
However, we still get local compactness of the embedding, i.e. every bounded sequence
( n)n2N in X�;� does have a subsequence ( ~ k)k2N which is locally converging in X� towards
an element  2 X�, i.e. where

(46) sup
t2[0;�];x2BR(0)

��� ~ k(x; t)�  (x; t)
���! 0; n!1

for every �xed R > 0. We need some of the mapping properties of the operators A1 and A2

de�ned in (31) and (32), respectively, in these spaces. This is the purpose of the following
lemma. De�ne the indicator function of a set M by

(47) �M (x) :=
�

1; x 2M
0; x 62M:

Lemma 2.9. The operator A1 is a linear operator which maps X� boundedly into X� with
norm bounded by �=� . In particular, for � < � the operator I � A1 is invertible on X�

with bounded inverse given by

(48) (I �A1)�1 =
1X
l=0

Al1

Moreover, the operators A1, I � A1 and (I � A1)�1 are local with respect to the variable
x with local bounds in the sense that

(49) A1(�Mu) = (�M �A1)(u); u 2 X�;

for all open sets M � Rm where �M �A1 is bounded in BC(M)�BC([0; �]) by �=� . These
operators map a locally convergent sequence onto a locally convergent sequence.
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Proof. The linearity of A1 is trivial and the bound of the operator A1 has been derived
in (33). Then the form (48) is the classical Neumann series in normed spaces. Clearly, the
operator A1 and I � A1 are local in x in the sense of (49). And the bound �=� holds for
�M �A1.

Consider a bounded locally convergent sequence ( n)n2N � X�. Then we have���A1( n �  )(x; t)
��� � �1

�

Z t

0

��� n(x; s)�  (x; s)
��� ds! 0; n!1;(50)

uniformly for x 2 BR(0) and t 2 [0; �] for each �xed R > 0. This means that A1 n is a
locally convergent sequence. The same arguments apply to I � A1 and (I � A1)�1, and
the proof is complete. �

We have seen above that the operator F is not continuous on X or X�, respectively.
The same is true for the operator A2. However, we will see that the operators are bounded



We consider a sequence of nonlinear smooth functions fn : R! [0; 1] such that

(53) fn(t) = 0 on [�1; � � 1
n ]; fn(t) = 1 on [�;1):

Such a sequence can be easily constructed with arbitrary degree of smoothness. We will
denote the operators depending on the nonlinearity functions fn by An and Fn and the
operators with the function f by A and F , respectively. We split the operator An into
An = A1 + A2;n. The operator A2 with the discontinuity in the nonlinearity f generates
some di�culties, which are reected by the following result.

Lemma 2.11. For �xed u 2 X� we have A2;nu ! A2u locally. The convergence does not
hold in the operator norm.

Proof. We estimate

�n :=
���A2u(x; t)�A2;nu(x; t)

���
�

��� Z t

0

Z
Rm

w(x; y)
�
f(u(y; t))� fn(u(y; t))

�
dy ds

���
�
Z t

0

Z
Rm

jw(x; y)j
���f(u(y; t))� fn(u(y; t))

��� dy ds
Now with Mn(t) := fy 2 Rm : u(y; t) 2 supp(f � fn)g we estimate this by

�n �
Z t

0

Z
Mn(t)

jw(x; y)j dy ds! 0; n!1(54)

as a result of (53). This holds uniformly on compact sets, but in general it does not hold
uniformly for x 2 Rm. �

For some function v 2 X� we de�ne the set

(55) M�;�;R[v] :=
n

(y; s) 2 BR(0)� [0; �] : v(y; s) = �
o
;

i.e. M�;�;R[v] is the set of space-time points (y; s) in BR(0) � [0; �] where v(y; s) equals
the threshold � in the Heaviside nonlinearity. When we use R =1 then in this de�nition
B1(0) is equal to Rm. By �(M) we denote the Euclidean area, volume or more general
Euclidean measure

(56) �(M) :=
Z
M

1dy

of a set M . We call an operator A2 locally continuous if for a locally convergent sequence
un ! u we have A2un ! A2u.

14



Lemma 2.12. The operator A2 is locally continuous in v 2 X� if and only if the volume
of M�;�;1[v] is zero. Moreover, in this case we have

(57) un
loc! u ) A2;nun

loc! A2;nu:

Proof. We need to start with some preparations. We �rst note that when �(M�;�;1[v])
is zero this is the case also for all M�;�;R[v] with R > 0. The set M�;�;R[v] is a closed
set, thus BR(0) nM�;�;R[v] is an open set. We choose a sequence Gl, l 2 N of closed sets
Gl � BR(0) nM�;�;R[v] such that

�l := �(BR(0) nGl)! 0; l!1:

Second, if vn ! v locally in X�, then for each l 2 N there exists N 2 N such that
f(vn(y; s)) = f(v(y; s)), (y; s) 2 Gl, for all n � N .

We are now prepared to prove continuity of A2 in v. Let v be given with �(M�;�;1[v]) =
0 and (vn)n2N be a sequence in X� with vn ! v locally. Given some r > 0 and � > 0 we
proceed as follows.

(1) We choose R > 0 such that

�

Z
RmnBR(0)

jw(x; y)j dy � �

2
; x 2 Br(0):

The existence of such R is a consequence of the condition w(x; �) 2 L1(Rm) which is
continuous in x 2 Rm and bounded on the compact set Br(0).

(2) On BR(0) we choose L 2 N such that

�L � C1 �
�

2
:

(3) Given L we choose N su�ciently large such that on GL we have

(58) f(vn(y; s)) = f(v(y; s)); (y; s) 2 GL

for all n � N .
We now estimate the integral

(59)
���A2vn(x; t)�A2v(x; t)

��� � ��� Z t

0

Z
Rm

w(x; y)
�
f(vn(y; s))� f(v(y; s))

�
dy ds

���
by a decomposition of the integration over Rm into one over

M1 := Rm nBR(0); M2 := BR(0) nGL; M3 := GL:

The three integrals can be estimated by (1), (2) and (3) and we obtain

(60)
���A2vn(x; t)�A2v(x; t)

��� � �; x 2 Br(0); t 2 [0; �]; n � N(�):
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This shows local continuity of A2 in v.
If the volume of M�(v) is not zero, there is a set G � Rm� [0; �] with �(G) > 0 where

v(y; s) = �. In this case as in Lemma 2.8 we can construct a sequence of functions vn 2 X�

which converges to v such that they are equal to v on Rm � [0; �] nG and vn(y; s) < � on
the open interior of G. In this case we obtain a remainder term���A2vn(x; t)�A2v(x; t)

���! ��� Z
G
w(x; y) dy ds

��� > 0; n!1;

according to (15). This proves that in this case the operator A2 is not continuous in v.
The more general convergence (57) is shown with the same arguments, where the equality
(58) needs to be replaced by some estimate involving fn. �

We will now carry out the basic steps to study solvability of the discontinuous equation.
We consider solutions un 2 X� for some � with �=� < 1 of the Volterra equation (24)

with function fn for n 2 N, i.e.

(61) un �Aun = u0; n 2 N:

Then, the operator I � A1 is linear and invertible in X�. Multiplication by the operator
(I �A1)�1 leads to the equivalent equation

(62) un � (I �A1)�1A2;nun = (I �A1)�1u0; n 2 N:

According to Lemma 2.2, the sequence (un)n2N of (4) on [0; �] is bounded uniformly by
the constant Ctot in X�. Then, the sequence

(63)  n := A2;nun; n 2 N;

is bounded in X�;� for � > 0. By the locally compact embedding of X�;� into X�, the
sequence ( n)n2N has a locally convergent subsequence in X� which we denote by ( k)k2N
and its limit in X� by  �. The operator (I � A1)�1 maps locally convergent sequences
onto locally convergent sequences, thus the sequence

uk = (I �A1)�1u0 + (I �A1)�1A2;kuk; k 2 N

is locally convergent towards some function u�. In this case by application of I � A1 we
obtain

u� +A1



Theorem 2.13 (Local existence for Heaviside type activation function f). Consider a
kernel w which satis�es the conditions of De�nition 2.1 with a Heaviside type activation
function f given in (2) where we assume that w 2 BC0;�(Rm) � L1(Rm). If an accumu-
lation point u� of solutions of un �Anun = u0 satis�es �(M�;�;1(u�)) = 0, then u� solves
the equation (I �A)u� = u0, i.e. the Volterra integral equation (24) has a solution in X�.

We are now prepared to derive a global existence result with the same technique as in
the previous section.

Theorem 2.14 (Global existence for Heaviside type activation function f). Consider a
kernel w which satis�es the conditions of De�nition 2.1 with a Heaviside type activation
function f given in (2) where we assume that w 2 BC0;�(Rm)�L1(Rm). If an accumula-
tion point u� of solutions of un�Anun = u0 satis�es �(M�;1;1(u�)) = 0, then the neural
�eld equation (4) has a global solution for t > 0.

3 Velocity and durability of neural waves

The goal of this part is to estimate the velocity and durability of neural waves. Here, we
will say that a wave �eld is relevant at a point x 2 Rm at time t > 0 if

(64) u(x; t) � �:

Otherwise a �eld is called irrelevant in x. The condition (64) arises in connection with
the integral Ju given by (9) in (4), where local contributions from x 2 Rm are given only
if u(x; t) � �. We will consider the time in which �elds which are zero in some part of the
space reach a relevant magnitude or amplitude, respectively.

Speed estimates for a neural wave. To evaluate the maximal speed in space of a
neural wave we must �rst de�ne an appropriate setup for the





with some constant cm depending on the dimension m. For the next steps we will directly
work with a bound (70).

On Rm nM the �eld was zero at t = 0. The local behavior of the �eld is bounded from
above by

(71) u(x; t) =
cmc

(1 + d(x;M))s
� (1� e�t=� ); x 2 Rm nM; t � 0:

After some time T the supremum of the �eld u on Rm nM will reach the threshold �, i.e.
� = cmc(1� e�T=� ). We note that the derivative of this �eld at the boundary @M can be
estimated via

(72)
d

dr

�

(1 + r)s

���
r=0

= �s� 1
(1 + r)s+1

���
r=0

= �s�:

Let the boundary @M be located at x = 0 and consider only the one-dimensional case.
The �eld u(x; T + t) for t = 0 has a tangent g(x) = � � s�x in x = 0. The curve has time
derivative at x = 0 bounded by u0 = �� + Cw. Now, we can estimate the speed of the
arguments x of u(x; t) = � de�ned in (71) by

u(x; T ) + u0(x; T ) � t � � � s�x+ (�� + Cw)t != �

which yields x=t = (Cw � �)=(�s) and thus (69). This is a local estimate, but the front
with u(x; t) = � will move along with the local speed and the above case is an upper
estimate for any x and t. This completes the proof. �

Remark. The speed estimate reects important properties of the neural �eld equa-
tion. If the threshold � approaches the maximal forcing term Cw, then the speed will be
arbitrarily slow since the �elds need more and more time to reach the threshold. If the
decay exponent s increases, the speed becomes smaller. If the threshold � is small, then
the speed will be large. For � ! 0 the speed diverges.

Durability of directed waves. We call a synaptic weight kernel w of the neural
�eld equation directed if there is a direction d0 2 S such that

(73) w(x; y) � 0 for all (x� y) � d � 0:

Directedness of a kernel means that its inuence to increase a �eld in some part of space





where we assume that a < c=b.

Uniqueness of solutions. First, we investigate uniqueness of the equation. Let u1; u2

be solutions and de�ne u = u1 � u2. Then u solves the homogeneous equation u0 = �bu
with u(0) = 0. Assume that there is some t > 0 such that u(t) 6= 0. Then we �nd � � 0
such that u(t) = 0 for t 2 [0; �] and u(t) 6= 0 for t 2 (�; �). Then, we divide by u(t) to
obtain

u0(t)
u(t)

= �b;)=log7n285 .7 Td [(.)-552(Then)]TJ/F11 10.9091 Tf 37.925 0 Td [(u)]TJ/F8 10.9091 Tf 10.272 0 Td [(solv)28(es)-369(the)]TJ/F53d [7.923 0 Td [(2)]TJ/F8 10.9091 Tf 11.256 0 Td [(()]TJ/F11 10.9091 Tf 4.242 0 Td [(�;)-167(�)]TJ/F8 10.9091 Tf 17.114 0 Td [().)-602(Then[(0)]Tu)1(TJ/F1 10.9091 Tf 2. 02(h)31=log7n285 .7 Td [(.)-552(Then)]TJ/F11 10.9091 t1.)-602(Then,)-399(w)209091 Tf 4.+0.9091 Tf 12.166 0 Td 2.1691 Tf 4.df 37.925 0 Td [(u)]TJ1010. Td 6.538tobtain
u
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