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be the model state vector, yj ∈ IRpj be a vector of pj observations and
hj : IRn → IRpj be a nonlinear function that relates the system states to the
observations at time tj . The data assimilation problem is then deflned as
follows.
Problem 1. Minimize, with respect to x0, the objective function

J [x0] =
1
2

(x0 − xb
0)T B¡1

0 (x0 − xb
0) +

1
2

NX

j=0

(hj(xj)− yj)T R¡1
j (hj(xj)− yj);

(5)
subject to xj ; j = 0; : : : ; N; satisfying the discrete dynamical system equa-
tions.
The background estimate, xb

0 0



Low dimensional system models can be obtained by using low resolution
approximations to the full dynamical system. Signiflcant features of the
system behaviour are often lost, however, in such approximations. In par-
ticular optimal error growth modes may not be captured by these models.
In the next section we propose an alternative method for generating low
order system approximations using techniques of model reduction.

3 MODEL REDUCTION BY BALANCED -
TRUNCATION

To flnd low order approximations to the linearized system model (6), we
project the system into a low dimensional subspace. We introduce linear
restriction operators UT

j ∈ IRr£n that project the state variables into the
subspace IRr where r << n. We deflne variables –x̂j ∈ IRr, such that
–x̂j = UT

j –xj , and deflne prolongation operators Vj ∈ IRn£r that project the
variables back into the original space IRn. The restriction and prolongation
operators UT

j and Vj satisfy UT
j Vj = Ir and VjUT

j is a projection operator.
We write the projected linear system as

–x̂j+1 = UT
j MjVj–x̂j ; d̂j = HjVj–x̂j : (8)

The reduced-dimension inner minimization problem then becomes
Problem 3. Minimize, with respect to –x̂(k)

0 , the objective function

Ĵ (k)[–x̂(k)
0 ] =

1
2

(–x̂(k)
0 −UT

0 [xb − x0
(k)])TB̂¡1
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+
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Figure 1: Errors in solutions to reduced linear least squares problem for low
resolution model (dotted) of order r = 750 and optimal reduced order model
(dashed) of order (a) r = 750 and (b) r = 250.
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r = 750, the errors between the exact solution and the solutions obtained
using the two difierent low dimensional models are shown in Figure 1(a).
The least square norms of the errors in the two cases are given, respectively,
by (i) 0:0396 and (ii) 0:0057. It is clear that for the same model size, the
optimal reduced order models are signiflcantly more accurate than the low
resolution models. This beneflt can be explained in part by examining the
eigenstructure of the reduced dimensional systems. More of the signiflcant
eigenvalues of the optimal reduced order model match those of the full sys-
tem than is the case for the low resolution model, showing that the modes of
the system are more accurately captured by the balanced-truncation method
than by using low resolution models.

Solutions to the reduced least squares problem obtained for smaller val-
ues of r demonstrate that balanced-truncation can be applied to flnd much
smaller systems with accuracy equal to that of the low resolution model. A
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