
The University of Reading
Department of Mathematics

A note on permutations for quadratic
programming problems

H. S. Dollar

Numerical Analysis Report 5/06

May 17, 2006

1







The above statements follow from [6, Theorem 2.1] in which we use the funda-
mental nullspace basis of bA:

bZ =
•
− bA−1

1
bA2

I

‚
:

Remark 2.1. Finding such a permutation closely relates to the problem of
flnding a nullspace basis of A; since if A1 is nonsingular, then we can form the
fundamental nullspace.

If the permutation ƒ moves all the large diagonal entries of H into bH22;
then the eigenvalues of (6) will start to cluster around 1 as we move towards the
optimal solution of (2) and the preconditioned system will be well conditioned.
Conversely, if all large diagonal entries of H were moved into bH11; the eigenval-
ues of (6) would have magnitude O( 1

„ ) and the preconditioned system will be
very ill-conditioned.

3 Permutation methods

Dollar [3] flrstly found a permutation ƒ1 such that the diagonal entries of
ƒ

T

1 Hƒ1 are sorted in non-decreasing order. A permutation ƒ2 was then ob-
tained by carrying out an LU factorization of ƒ

T
AT with threshold row pivot-

ing. The hope was that by using a threshold we could reduce the number of
large diagonal entries of H that were moved back into bH11; where ƒ = ƒ1ƒ2:
Unfortunately ƒ2 was frequently far from being the identity so many of the
large entries ended up in bH11:

In an attempt to improve on this method she also looked at flnding a permu-
tation eƒ1 such that the diagonal entries of eƒT

1 H eƒ are sorted in non-increasing
order. As before, a permutation eƒ2 is obtained by carrying out an LU fac-
torization of eƒT AT



the two, the numerical tests carried out in the thesis [3] imply that there might
be another method to flnd a permutation ƒ which, for convenience, can be
coded using standard Matlab R© functions and is more efiective than the above
method.

Let us consider how the LU factorization command [L,U,P] = lu(A,thresh)
works in Matlab R©: The variable thresh is a pivot threshold in [0,1]. Pivoting
occurs when the diagonal entry in a column has magnitude less than thresh
times the magnitude of any sub-diagonal entry in that entry. In our code, we
carry out the command [L,U,Pi] = lu(A’,thresh). We would like the rows
of AT that correspond to large entries of H to be avoid being chosen by the LU
threshold method, so we would like to scale these rows so that their entries are
small relative to those corresponding to small diagonal entries in H: There are
two obvious ways to do this scaling:

• set A = AD−1; flnd ƒ by carrying out an LU factorization with threshold
pivoting on A

T
;

• set A = AD− 1
2 ; flnd ƒ by carrying out an LU factorization with threshold

pivoting on A



Table 1: Comparison of interior point and PPCG iterations for the LUH, LUD
and LUDsq permutations.

LUH LUD LUDsq
Name m n k §1 §2 k §1 §2 k §1 §2

AUG2DQP 1600 3280 436 2292 553 20 1397 1524 21 1427 1536
AUG2DCQP 1600 3280 87 3591 5001 22 1508 1651 20 1407 1535
AUG3DQP 1000 3873 12 847 882 11 419 425 28 1311 1137
AUG3DCQP 1000 3873 13 896 946 11 701 704 20 1336 1206
CONT-050 2401 2597 6 20 19 6 20 19 6 20 19
CVXQP1 M 500 1000 9 792 811 9 353 357 9 294 298
CVXQP2 M 250 1000 11 222 231 11 378 382 11 253 258
CVXQP3 M 750 1000 10 766 774 10 247 252 10 214 214
DUALC1 215 223 15 53 62 11 39 41 11 37 37
DUALC2 229 235 31 174 181 7 26 25 7 26 25
DUALC5 278 285 6 15 15 6 19 19 6 20 20
DUALC8 503 510 17 144 165 8 35 35 8 35 35
KSIP 1001 1021 10 32 33 9 29 30 9 29 30
MOSARQP1 700 3200 10 738 743 12 232 235 12 454 458
PRIMAL1 85 410 10 369 367 10 359 358 10 337 331
PRIMAL2 96 745 12 544 549 12 625 620 12 549 549
PRIMAL3 111 856 9 534 532 9 600 602 9 563 562
PRIMAL4 75 1564 7 565 561 7 424 426 7 402 403
PRIMALC1 9 239 31 126 134 27 102 113 27 97 106
PRIMALC2 7 238 40 64 87 21 56 59 21 57 57
STCQP2 2052 4097 14 14 14 14 14 14 14 14 14

We note that each iteration of the PPCG method will be comparable in CPU
time and memory usage for each of the difierent permutation methods. The
method used in my thesis to flnd the permutation will be denoted by LUH, and
the ideas presented in this note will be denoted by LUD and LUDsq respectively.

The results are given in Table 1. We observe that the methods LUD and LUDsq
are generally using a signiflcantly reduced number of PPCG iterations to solve
the QP problems compared with the LUH method. To help us further analyze
the results the total number of PPCG iterations used are compared using a per-
formance proflle, Figure 1. We observe that, as expected, the methods LUD and
LUDsq are generally performing signiflcantly better than the LUH method. The
LUD and LUDsq methods are performing similarly for around 75% of the prob-
lems, but LUD is generally performing better for the remaining problems. This
is because LUD method is more likely to \detect" columns in A corresponding
to large diagonal entries in H early on in the interior point method.
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Figure 1: Performance proflle comparing the total number of PPCG iterations.

4 Conclusions

We have shown how the choice of permutation used to obtain a non-singular A1

can have a dramatic efiect on the number of PPCG iterations required during
a run of an interior point method for solving quadratic programming problems
and that, for certain choices of preconditioner, taking the entries of the H into
account when forming A1 can be advantageous.

The currently proposed methods will not be suitable for very large problems
so the next stage of this work will be to develop a similar method which is also
suitable for large values of n and m:
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