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� Introduction

There has been much research in CFD into the accurate and e�cient solution of

homogeneous systems of conservation laws� More recently� as numerical models

become more complicated and the areas of application of these methods widens�





which has yet to be approximated� For convenience� a cell centre scheme in which

the control volumes coincide with the mesh cells has been considered throughout

this work� although the ideas may be applied to other types of sc



an approximate Riemann solver to decompose the �ux terms into characteristic

components by diagonalisation of the homogeneous part of a linearised form of

the system ������ which is

U t � �AUx � � � ���
�

where �A � �F

�U
is the linearised �ux Jacobian of the system� The Riemann

problems arise at the interfaces between the control volumes �the mesh nodes in

this case� where discontinuities occur in the discrete representation of the solution�

Application of Roe�s Riemann solver results in a decoupling of the linearised

equations that splits the �ux di�erence so that it can be written in a number of

equivalent forms� i�e� at an in
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Figure ���� Wave propagation directions in a control volume�

Choosing the Roe�average state �represented by ��� to satisfy ����� means that

the resulting approximate Riemann solver is an exact solver for this local lineari�

sation of the Riemann problem� More importantly� in the context of this work�

when ����� is combined with ����� the nodal update scheme given by ����� is

equivalent to the �uctuation�signal scheme 	��� given by
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in which

��� �
�

�
��� � j��j� � �����

This splits the update into contributions related to right�going ��� and left�going

��� characteristics in the decomposition� It follows that the solution is updated

using only contributions from the wave perturbations of the Riemann problems

at the nodes which enter the cell under consideration� as illustrated in Figure ����

It remains to choose an appropriate form for the numerical source term integral

S��

��� Source terms

This work follows much recent research into source term discretisation� see for

example 	�� �� �� 
�� which has concentrated on the use of a characteristic de�

composition of the type shown in ������ This similarly projects the source term

integral onto the eigenvectors of the �ux Jacobian �A� so that in its linearised

�



form it can be expressed as
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where ��k� the coe�cients of the decomposition� are the components of the vector

�R���S� Note that the integral approximated in ���� is over a dual cell of the

mesh �associated with the interface i� �
�
�� and can be easily incorporated within

the �uctuation�signal form of the �nite volume scheme given by ������ S�i will

be constructed out of contributions from both ends of the cell� with consistency

assured as long as the whole of each dual cell integral ���� is distributed�

It is useful �though less so than in higher dimensions� to note here that the

analytical form of the source term can be split up into components which can be

discretised separately� i�e�

S � S� �
X
j

S�
j

�S�
j

�x
� ������

so that its integral can be approximated consistently by
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and comparison with ���� leads directly to the coe�cients ��k of the characteristic

decomposition of �Si� �

�

�

The terms within the sum on the right hand side of ������ may be called upon

to balance components of the �ux di�erence �F ����� so they must be linearised

in the same way to ensure that� for the chosen equilibrium state�

F x � S � � � �F i� �

�

� �Si� �

�

� � ������

throughout the domain� This follows because at this equilibrium the decom�

positions ����� and ���� have been constructed to give �� �R�� �U � �R���S �or

alternatively ��k
��k � ��k�� Hence �� still represents the evaluation of a quantity at

the Roe�average state�

The �rst term on the right hand side of ������ contains only contributions

which provide no exact balance with the �ux derivatives �e�g� bed friction terms

in the shallow water equations�� so the precise form of their linearisation is not

�



prescribed by the above arguments� However� it seems sensible that they should

also be evaluated at the same state� given by the Roe�average�

As a result of the characteristic decomposition ����� the source terms may

be discretised in an �upwind� manner �although� since none of the components

has an inherent upwind direction� this must be taken from the corresponding �ux

component�� This leads straightforwardly to an appropriate upwind �uctuation�

signal formulation for the �rst order scheme ����� with source terms� given by
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i � Un
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in which I� � ���� ���� The correct balance follows immediately from �������

It is not immediately clear though� how the discretisation of the source term

implied by ������ can be converted into a numerical source integral S�i so that

the same balance can be achiev
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in which sgn�I� � ����j��j� Since ����� and ���� hold� and
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and S� becomes obsolete� In some cases it may also be possible to incorporate

some part of the source term which can be expressed as a derivative within the

numerical �ux� and then apply an appropriate discretisation to the remaining

component of the source�

����� Flux limited schemes

The approach presented in the previous section is no di�erent to the standard

upwind technique for approximating source terms when a �rst order upwind �ux

discretisation is being used 	��� The only new aspect is the way it has been

written� splitting the dual cell source integral into two parts� Usually though�

accuracy of higher than �rst order is required for practical calculations�

The accuracy of Roe�s scheme is improved� without introducing spurious os�

cillations into the solution� by the application of �ux limiting techniques 	��� ���

These ensure second order accuracy in smooth regions of the �ow� whilst enforc�

ing a Total Variation Diminishing �TVD� property� It is achieved by including a

high order correction term in the numerical �ux� which becomes 	���
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in which L � diag�� � L�rkpi9999 TD
���



with a similar expression for S�
i� �

�

� in ������� Note that since ������ is an edge�

based quantity� it is simple to evaluate with the �uxes and include within the

numerical model�

At this point it should be emphasised that the TVD condition which the �ux

limiter has been constructed to satisfy applies to the homogeneous system of con�

servation laws� and the inclusion of source terms means that spurious oscillations

may appear in the �nal solution� The same is true of the slope limited schemes

of the next section� This problem has not been addressed in this work�

����� Slope limited schemes

The same balance is slightly more di�cult to achieve when the high resolution

scheme is constructed using a MUSCL�type slope limiting approach 	���� This is

because the underlying representation of the solution is now taken to be linear

within each cell so that ������ is no longer true� It can though� be replaced by

the more general expression�
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where the superscripts �R and �L represent evaluation on� respectively� the right

and left hand sides of the interface indicated by the associated subscript �as shown

in Figure ��
�� The corresponding numerical �ux is
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in which the Roe�averages are now evaluated from the reconstructed piecewise lin�

ear solution� An appropriate correction must therefore be made to the numerical

source within each cell� and this leads to
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The �rst term on the right hand side is evaluated precisely as before� in �������

except that the interface values are now those of the MUSCL reconstruction of

the solution within each cell� �S is simply the source term integral approximated

over the mesh cell �cf� �������� and hence evaluated at the Roe�average of the left

and right states of the linear reconstruction of the solution within the cell� In

��



terms of the approximations ������ and ������ the extra term can be thought of

as a correction to the integral of the source term over the dual cell arising from

the linear variation of the approximation�
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appropriate state of equilibrium �cf� ������ in which the equilibrium was achieved

automatically using the original averages��

Following the same steps as in Section � to transform the �uctuation�signal

scheme to the �ux�based scheme� but including this extra term in the �ux d�

i�erence� leads to precisely the same form for the scheme when approximating

the homogeneous system as shown in ������ but with new expressions for the

numerical �uxes� given by
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in the �rst order case�
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In these equations d is the depth of the �ow� h is the depth of the bed below a

nominal still water level� b � b�x� is the channel breadth� u is the �ow velocity�

and g is the acceleration due to gravity� These quantities are depicted in Figure

����

u u

b
d

h

�

Side view Plan view

Figure ���� The shallow water �ow variables�

Equation ������ provides an example which includes source terms and a spatial

dependence on channel breadth which is independent of the �ow� Furthermore�

the balance which has been sought in previous sections is illustrated by the steady

state represented by still water �d � h and u � ��� in which case the system ������

reduces to 

�

�
gbd�

�
x

�
�

�
gd�bx � gbdhx � ������

Previously it has only been possible to maintain this steady state numerically

when �rst order schemes have been used�

The characteristic decomposition ������ for the one�dimensional shallow water

equations ������ and ������ is completely de�ned by
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and it is easily shown that ������ is satis�ed exactly when

�u �

p
bRdRuR �

p
bLdLuLp

bRdR �
p
bLdL

� �c� � g

�p
bRdR �
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bLdLp

bR �
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bL

�
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which reduce to the Roe�averages for one�dimensional shallow water �ow de�

scribed in 	�� in the absence of breadth variation �i�e� when bR � bL�� The

corresponding decomposition of the source terms ���� then leads to

��� �
�
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In order for ������ and ����� to maintain the correct balance� i�e�

��k
��k � �
k � ��k � � �k ������

or equivalently�

�R
�
�� �R���U � �R�� �V � �R���S

�
� � ������

when the �ow is quiescent� �b is constructed so that it satis�es

�b�h � ��bh�� �h�b � �����

where �h is ev



These have been studied using a variety of channel geometries�

The geometry for the �rst test case was proposed by the Working Group

On Dam�Break Modelling 	��� and the bed and breadth variation of the channel

�of length ����� are depicted in Figure ���� The upwind source term treatment

described in this paper is compared with a much simpler pointwise discretisations

in Figure ��� �using a uniform ��� cell grid� so that �x � ����� which show graphs

of water surface level and unit discharge for the numerical steady states which

result from quiescent initial conditions �� � d � h � ���� and u � ����� and

applying simple non�re�ecting boundary conditions� In this case the initial �still

water� conditions should be maintained inde�nitely by the numerical scheme�
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Figure ���� Breadth �left� and bed �right� variation for the �tidal �ow� test case�

The comparison is made between �rst order� slope limited and �ux limited

schemes combined with pointwise and upwind source term discretisations� in al�

l high resolution cases the Minmod limiter 	��� has been applied� The upwind

source term discretisations always produce the correct steady state solution� ex�

act to machine accuracy and indistinguishable from the exact solution in the

graphs� This is not only true for the �rst order scheme �which has been achieved

previously� but also for the high resolution TVD schemes using any �ux or slope

limiter on any grid in the presence of bed slope and breadth v

















the solution to remain free of unwanted oscillations �a value of ��� was used in the

second order case compared with ��� for the �rst order scheme�� At higher CFL

numbers the accuracy of the solutions is comparable to the accuracy of those

obtained with the simpler source term discretisations� This is due to the fact

that the TVD condition only applies in the absence of source terms� Note though

that� as in the still water test� even though the pointwise source discretisation

gives a reasonable approximation to the depth� it is very poor at predicting the

�ow velocity�

� Higher dimensions

The following analysis is presented for the two�dimensional case but can be ap�

plied simply in three dimensions as well� The conservative form of a system of

conservation laws with additional source terms is expressed as

U t � Fx �Gy � S � �����

in which there are now two �ux vectors� denoted by F � F �U� and G � G�U��

The case where the �uxes depend on a quantity other than the �ow variables

is not presented here� having no obvious application to two�dimensional shallow

water �ows� but can be dealt with in a similar manner to the one�dimensional

case presented in Section ����

A combination of a standard �nite volume approximation of the �ux terms on

an arbitrary polygonal mesh �although only triangular and quadrilateral meshes

will be considered in the results� and a forward Euler discretisation of the time

derivative leads to the conservative di�erence scheme�

Un��
i � Un

i �
�t

V



For simplicity the scheme will again be assumed to be a cell centre discretisation

in which the control volumes coincide with the mesh cells� although the techniques

may also be applied to other types of scheme� The following analysis runs along

similar lines to that presented in previous sections for the one�dimensional case�

G�ilF�
il

S
�

i

Vi

Lil

��nil

cell i

cell l

Figure ���� Numerical �uxes and sources for the cell centre scheme�

��� The �rst order scheme

The numerical �uxes which lead to the �rst order Roe�s scheme in two dimensions

are given by

�F �

il� G
�

il� �  �nil �
�

�
�F i � F l� Gi �Gl� �  �nil �

�

�

�
�Rj��j �R���U

�
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in which the eigenvectors and eigenvalues which are needed to construct �R and

�� are now those of the matrix �Cn � � �A� �B� �  �n� where

�A � �F

�U
and �B � �G

�U
���
�

are the linearised �ux Jacobians� It can be seen that the numerical �ux is similar

in form to that used in one dimension ������ In particular� �� again denotes the

evaluation of a quantity at its Roe�average state�

Since the two�dimensional scheme is based on Riemann solvers oriented per�

pendicular to the edges of the grid cells the decomposition also bears a strong

resem



denoted �� are evaluated at the appropriate Roe�average state 	��� then the �ux

di�erences can be written in the decomposed form

��F�G� �  �n � �Cn�U � �R�� �R���U �
NwX
k��

��k
��k�rk �����

from which it follows in much the same way as in one dimension that the scheme

����� is equivalent to
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Vi
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where the superscript �� now indicates the incoming characteristics at the ap�

propriate edge of the control volume �see Figure ����� It is easily seen that this

reduces to ����� when restricted to one dimension�



in which V� is the area of the edge�cell� Now� given that the solution has already

been assumed to be constant in each part of the edge�cell for the purposes of the

Riemann solver� and hence the �ux evaluation� the approximation reduces to

�Sil �

�
�V� �S� �

X
j

�S�
j ��Sx

j � S
y
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il

� ����

where �n is the normal to the edge� scaled by its length� see also ������� The terms

within the sum may again be required to balance the �ux di�erence� so the same

Roe linearisation is used in their evaluation� and it follows that

F x �Gy � S � � �
�
��F�G� � �n� �S

�
il

� � ������

throughout the domain� �il is the edge�cell corresponding to the edge between

cells i and l� as shown in Figure ���� The three�dimensional case is similar� with

all the approximations being carried out over a face�cell with the solution being

assumed constant on either side�

The two�dimensional source term can now be written as a characteristic de�

composition similar to that of the �ux di�erence ������ i�e� its linearisation can

take the form

�Sil �
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il
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Evaluating this at the same Roe�average state as the �ux di�erence means that

the correct balance is attained because� at equilibrium� the decompositions give

L�R�� �U � R��S� S�i will be constructed out of contributions from each edge

of the cell� with consistency assured as long as the whole of each edge�cell integral

������ is distributed�

The decomposition has been carried out so that� when ����� is combined with

������ to give
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a precise balance can be achieved when one is sought between the sources and

the �ux gradients�

The relationship between the two forms of the �nite volume scheme� ����� and

������ can now be exploited� Substituting for I� in ������ gives
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In addition� it is easily shown that
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and the wave strengths�
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complete the decomposition ������

In this case� in order to provide the desired balance� the source term is written

in the form ������ giving

S �

�
BBBBB�

�

gd

�

	
CCCCCA
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�
BBBBB�

�

�

gd

	
CCCCCA
�r � ��� h� � ������

At �rst glance this seems counterproductive� but it immediately allows the source

term integral over an edge�cell to be approximated in a manner which will allow

the discrete balance with the �ux integral� i�e� it can be approximated in the form

���� via ������ This leads to

�Sil � Lil

�
BBBBB�

�

g �d�hnx

g �d�hny
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which is used to obtain the coe�cients which are used in the characteristic de�

composition ������� In this case these are

��� �
�

�
�c�h � ��� � � � ��� � ��

�
�c�h � ������

By construction� it follows that ��k
��k � ��k � � for each k� i�e�

�R
�
L�� �R�� �U � �R���S

�
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when the �ow is quiescent� and the numerical balance is assured�

��� Numerical results

The test cases presented in this section are essentially a subset of those de�

scribed in Section ����� for the one�dimensional schemes� but applied to the

��



two�dimensional shallow water equations� For the purposes of presentation� com�

parisons will be made between breadth�averaged solutions for channel �ows and

exact solutions to the corresponding one�dimensional problem� These will obvi�

ously di�er slightly in the non�quiescen



0 200 400 600 800 1000 1200 1400
x

15.7

15.8

15.9

16.0

16.1

16.2

S
ur

fa
ce

 le
ve

l

Exact

Pointwise sources

Upwind sources

0 200 400 600 800 1000 1200 1400
x

-1

0

1

2

3

4



discretisation maintains still� �at water inde�nitely to machine accuracy in both

the �rst order and the high resolution cases� see Figure ��
� This is true of all of

the channel shapes which were tested and each of the schemes described earlier in

the text� The pointwise evaluation of the source term is clearly unable to match

this�

Results for the tidal �ow test case described in Section ����� are shown in

Figure ��� for the same triangular grid� Again� the advantage of using the upwind

source term discretisation is clearly visible and here� unlike in one dimension� the

CFL number used to obtain the results is still ���� When the source terms are

upwinded the results from the high resolution scheme are almost oscillation�free

�although it must be remembered that the averaging across the channel breadth

does produce a small amount of smoothing�� Generally� it has been seen that the

properties exhibited by the schemes in one dimension are carried over into higher

dimensions�

� Conclusions

In this paper a new method has been presented for the discretisation of source

terms when they appear as part of a nonlinear system of conservation laws� Specif�

ically� the correct approximation to the source terms is sought� given that a

particular �nite volume scheme has been used for the discretisation of the �ux

terms� Roe�s scheme has been chosen here as the underlying numerical scheme�

but the philosoph



source terms which provide some sort of balance with the �ux derivatives� Even

so� the same techniques can easily be applied to other source terms �such as those

which model bed friction in the shallow water equations� which do not exhibit a

precise balance� but the advantages over the simple pointwise discretisation are

less obvious�

The e�ectiveness of these techniques has been illustrated using the one� and

two�dimensional shallow water equations �the extension to three�dimensional sys�

tems of equations is straightforward� though not described here in detail�� in which

source terms are used to model variations in the bed topography and �in one di�

mension� channel breadth� Particular attention has been paid to the special case

of still water� and the schemes have been constructed so that they maintain this

state� In fact� the improved accuracy of the new �upwind� discretisation of the

source terms is also shown in the approximation of other steady state solutions�

particularly in one dimension when �ux limiters have been used� and to a great

extent by time�dependent test cases as well� The improvement is less marked for

slope limited schemes� indicating that a more sophisticated approximation to the

source term may be necessary away from the still water steady state� This has

been shown by comparison with a selection of test cases for which exact solutions

are available� The advantages over the commonly�used pointwise discretisation�

s are particularly apparent when quantities depending on the �ow velocity are

compared� At this stage of the research� the main problem with the new tech�

nique �a problem which also applies to the old methods� is in the modelling of

time�dependent problems� Here� in order to avoid spurious oscillations in the high

resolution results a low CFL number has to be imposed ���� in the cases tested

here�� and in some cases the unphysical oscillations cannot be removed complete�

ly� This is because the TVD condition which is satis�ed by the scheme is only

valid for the homogeneous equations� The possible construction of a TVD condi�

tion in the presence of source terms is a topic for future research� In the meantime

it may prove bene�cial to apply a Flux�Corrected Transport approach since it is

clear from the techniques presented in this paper how the source terms should be

treated for both upwind and Lax�Wendro� schemes� and the �rst order upwind

scheme appears to be robust enough to eradicate the unwanted oscillations�
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