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Abstract

The problem of flnding good preconditioners for the numerical solution
of an important class of indeflnite linear systems is considered. These
systems are of a regularized saddle point structure

•
A BT

B −C

‚ •
x
y

‚
=

•
c
d

‚
;

where A ∈ Rn×n, C ∈ Rm×m are symmetric and B ∈ Rm×n.
In Constraint preconditioning for indefinite linear systems, SIAM J.

Matrix Anal. Appl., 21 (2000), Keller, Gould and Wathen analyze the
idea of using constraint preconditioners that have a speciflc 2 by 2 block
structure for the case of C being zero. We shall extend this idea by al-
lowing the (2,2) block to be symmetric and positive semi-deflnite. Results
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that quasideflnite matrices are strongly factorizable , i.e., a Cholesky-like fac-
torization LDLT exists for any symmetric row and column permutation of the
quasideflnite matrix, [25]. The diagonal matrix has n positive and m negative
pivots. However, we shall not conflne ourselves to quasideflnite matrices.

It may be attractive to use iterative methods to solve systems such as (1),
particularly for large m and n. In particular, Krylov subspace methods might
be used. It is often advantageous to use a preconditioner, P, with such iterative
methods. The preconditioner should reduce the number of iterations required for
convergence but not signiflcantly increase the amount of computation required
at each iteration, [24, Chapter 13].

In Section 2 we shall flrstly review the well known spectral properties of
a technique commonly known as constraint preconditioning when C = 0 [15,
17]. For the case of C = 0; a constraint preconditioner exactly reproduces the
(constraint) blocks B; BT and the C = 0 block. It is restrictive to assume that
the matrix C in the saddle point systems is always a zero matrix: a number
of situations arise in which C 6= 0 [1, 16, 23]. In all these cases, C is positive
semi-deflnite and, hence, we shall consider the idea of extending constraint
preconditioners to the case of C being positive semi-deflnite. In particular,
the preconditioner will exactly reproduce the B; BT and C blocks, whilst the
A block will be replaced by a symmetric block which we refer to as G; this
is considered in Sections 3 and 4. Such a preconditioner has been considered
before, for example, Perugia and Simoncini consider the case of G = I [18],
and Siefert and de Sturler assume that G is nonsingular [22], but we show that
these assumptions can be relaxed. In Section 5 we shall report numerical results
where our preconditioners have been used to solve various test problems.

2 Constraint preconditioners

Let us initially assume that C = 0: Keller, Gould and Wathen [15] investigated
the spectral properties of the resulting preconditioned system when we use of a
preconditioner of the form

P =
•

G BT

B 0

‚
; (2)

where G approximates but (in general) is not the same as A. They were able
to prove various results about the eigenvalues and eigenvectors for the precon-
ditioned systems P¡1A; where A and P are deflned in (1) and (2) respectively.
P is called a constraint preconditioner. Proof of the following theorem can be
found in [15].

Theorem 2.1. Let A 2 R(n+m)£(D[(P)]TJ/F21 6.97 Tfo20 TD[(n)]TJ/F6 6.97 Tf 4.9320 TD[(+)]TJ/F20 6.97 Tf 6.1120 TD[(m)]TJ/F6 6.97 Tf 7.0760 TD[())]TJ/F2169.96 Tf 6.97 -3.61 TD[(Ab50(et-316(oa-317(sysmetric)-347(snd)-3187in)eflnite)-3387iatrix)-3687if
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where A 2 Rn£n is symmetric and B 2 Rm£n is of full rank. Assume Z is an
n £ (n ¡ m) basis for the nullspace of B. Preconditioning A by a matrix of the
form

P =
•

G BT

B 0

‚
;

where G 2 Rn£n is symmetric, and B 2 Rm£n is as above, implies that the
matrix P¡1A has

1. an eigenvalue at 1 with multiplicity 2m;

2. n¡m eigenvalues ‚ which are deflned by the generalized eigenvalue problem
ZT AZxz = ‚ZT GZxz:

This accounts for all of the eigenvalues.

If either ZT AZ or ZT GZ are positive deflnite, then the indeflnite precon-
ditioner P applied to the indeflnite saddle point matrix A with C = 0 yields a
preconditioned matrix P¡1A which has real eigenvalues [15]. If both ZT AZ and
ZT GZ are positive deflnite, then we can use a projected preconditioned conju-
gate gradient method to flnd x and y; see [12]. Results about the associated
eigenvectors and the Krylov subspace dimension can also be found in [15].

3 Constraint preconditioners for the case of sym-
metric and positive deflnite C

In this section we shall assume that the matrix C is symmetric and positive
deflnite. The term constraint preconditioner was introduced in [15] because the
(1,2) and (2,1) matrix blocks of the preconditioner are exact representations
of those in A; where these blocks represent constraints. However, we also ob-
serve that the (2,2) matrix block is an exact representation when C = 0. This
motivates the generalization of the constraint preconditioner to take the form

P =
•

G BT

B ¡C

‚
; (3)

where G 2 Rn£n approximates, but is, in general, not the same as A:
For symmetric matrix systems, the convergence of an applicable iterative

method is determined by the distribution of the eigenvalues of the coe–cient
matrix. It is often desirable for the number of distinct eigenvalues to be small so
that the rate of convergence is rapid. For non-normal systems the convergence
is not so readily described, see [14, page 6].

We shall use the following assumptions in the theorems of this section:

A1 C 2 Rm£m is symmetric and positive deflnite,

A2 A 2 Rn£n is symmetric,
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A3 B 2 Rm£n (m < n) has full rank,

A4 G 2 Rn£n is symmetric,

A5 A 2 R(n+m)£(n+m) is as deflned in (1),

A6 P 2 R(n+m)£(n+m) is as deflned in (3).

In the next section A1 will be relaxed.

Theorem 3.1.
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If A + BT C¡1B or G + BT C¡1B are positive deflnite, then the precondi-
tioned system has real eigenvalues. If both A + BT C¡1B and G + BT C¡1B
are positive deflnite, then we can apply a projected preconditioned conjugate
gradient method to flnd x and y [7, 11]. We also observe that if C has a small
2-norm, kAk2 = O(1) and kGk2 = O(1); then the BT C¡1B terms will dominate
the generalized eigenvalue problem (8) for Bx 6= 0 and, hence, there will be at
least a further m eigenvalues clustered about 1 for kCk2 ¿ 1: This additional
clustering of part of the spectrum of P¡1A will often translate into a speeding
up of the convergence of a selected Krylov subspace method, [2, Section 1.3].

Theorem 3.2. Assume that A1-A6 hold and G+BT C¡1B is positive deflnite,
then the matrix P¡1A has n + m eigenvalues as deflned in Theorem 3.1 and
m + i + j linearly independent eigenvectors. There are

† m eigenvectors of the form
£

0T yT
⁄

that correspond to the case ‚ = 1;

† i (0 • i • n) eigenvectors of the form
£

xT yT
⁄

arising from Ax = ¾Gx
for which the i vectors x are linearly independent, ¾ = 1; and ‚ = 1; and

† j (0 • j • n) eigenvectors of the form
£

xT yT
⁄

that correspond to the
case ‚ 6= 1:

Proof. The form of the eigenvectors follows directly from the proof of Theo-
rem 3.1. It remains for us to show that the m + i + j eigenvectors are linearly
independent, that is, we need to show that

•
0 ¢ ¢ ¢ 0

y
(1)
1 ¢ ¢ ¢ y

(1)
m

‚
2
664

a
(1)
1
...

a
(1)
m

3
775 +

"
x

(2)
1 ¢ ¢ ¢ x

(2)
i

y
(2)
1 ¢ ¢ ¢ y

(2)
i

#
2
664

a
(2)
1
...

a
(2)
i

3
775

+

"
x

(3)
1 ¢ ¢ ¢ x

(3)
j

y
(3)
1 ¢ ¢ ¢ y

(3)
j

#
2
664

a
(3)
1
...

a
(3)
j

3
775 =

2
64

0
...
0

3
75(9)

implies that the vectors a(k) (k = 1; 2; 3) are zero vectors. Multiplying (9) by
P¡1A, and recalling that in the previous equation the flrst matrix arises from
the case ‚k = 1 (k = 1; : : : ; m); the second matrix from the case ‚k = 1 and
¾k = 1 (k = 1; : : : ; i); and the last matrix from ‚k 6= 1 (k = 1; : : : ; j); gives

•
0 ¢ ¢ ¢ 0

y
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(1)
m

‚
2
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3
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"
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(2)
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3
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+
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(3)
j
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1 ¢ ¢ ¢ y

(3)
j

#
2
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‚1a
(3)
1

...
‚ja

(3)
j

3
775 =

2
64

0
...
0

3
75 :(10)
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Subtracting (9) from (10) we obtain

"
x

(3)
1 ¢ ¢ ¢ x

(3)
j

y
(3)
1 ¢ ¢ ¢ y

(3)
j

#
2
664

(‚1 ¡ 1)a(3)
1

...
(‚j ¡ 1)a(3)

j

3
775 =

2
64

0
...
0

3
75 :

The assumption that G + BT C¡1B is positive deflnite implies that x
(3)
k (k =

1; : : : ; j) are linearly independent and thus that (‚k ¡ 1)a(3)
1 = 0; (k = 1; : : : ; j):

The eigenvalues ‚k (k = 1; : : : ; j) are non-unit which implies that a
(3)
k = 0

(k = 1; : : : ; j): We also have linear independence of x
(2)
k (k = 1; : : : ; i) and thus

a
(2)
k = 0 (k = 1; : : : ; i): Equation (9) simplifles to

•
0 ¢ ¢ ¢ 0

y
(1)
1 ¢ ¢ ¢ y

(1)
m

‚
2
664

a
(1)
1
...

a
(1)
m

3
775 =

2
64

0
...
0

3
75 :

However, y
(1)
k (k = 1; : : : ; m) are linearly independent and thus a

(1)
k = 0 (k =

1; : : : ; m):

Krylov subspace theory states that iteration with any method with an op-
timality property, e.g. GMRES [21], will terminate when the degree of the
minimum polynomial is attained. This is also true of some other (non-optimal)
practical iterations such as BiCGTAB as long as failure does not occur. In
particular, the degree of the minimum polynomial is equal to the dimension of
the corresponding Krylov subspace K ¡P¡1A; b

¢
(for general b), [20, Proposition

6.1].

Theorem 3.3. Assume that A1-A6 hold and G+BT C¡1B is positive deflnite,
then the dimension of the Krylov subspace K ¡P¡1A; b

¢
is at most minfn+2; n+

mg:

Proof. As in the proof of Theorem 3.1, the generalized eigenvalue problem is
•

A BT

B ¡C

‚ •
x
y

‚
= ‚

•
G BT

B ¡C

‚ •
x
y

‚
: (11)

Suppose that the preconditioned matrix P¡1A takes the form

P¡1A =
•

£1 £3

£2 £4

‚
; (12)

where £1 2 Rn£n; £2 2 Rm£n; £3 2 Rn£m; and £4 2 Rm£m: Using the facts
that P ¡P¡1A¢

= A and B has full row rank, we obtain £3 = 0 and £4 = I:
The precise forms of £1 and £2 are irrelevant for the argument that follows.
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From the earlier eigenvalue derivation, it is evident that the characteristic
polynomial of the preconditioned linear system (12) is

¡P¡1A ¡ I
¢m

nY

i=1

¡P¡1A ¡ ‚iI
¢
:

In order to prove the upper bound on the Krylov subspace dimension, we need
to show that the order of the minimum polynomial is less than or equal to
minfn + 2; n + mg: Expanding the polynomial

¡P¡1A ¡ I
¢ Qn

i=1

¡P¡1A ¡ ‚iI
¢

of degree n + 1; we obtain
•

(£1 ¡ I)
Qn

i=1 (£1 ¡ ‚iI) 0
£2

Qn
i=1 (£1 ¡ ‚iI) 0

‚
:

Since £1 has a full set of linearly independent eigenvectors, £1 is diagonalizable.
Hence,

(£1 ¡ I)
nY

i=1

(£1 ¡ ‚iI) = 0:

We therefore obtain

¡P¡1A ¡ I
¢ nY

i=1

¡P¡1A ¡ ‚iI
¢

=
•

0 0
£2

Qn
i=1 (£1 ¡ ‚iI) 0

‚
: (13)

If £2

Qn
i=1 (£1 ¡ ‚iI) = 0; then the order of the minimum polynomial of P¡1A

is less than or equal to minfn + 1; n + mg: If £2

Q
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B1 C 2 Rm£m is symmetric and positive semi-deflnite, and has rank p where
0 < p < m;

B2 C is factored as C = EDET ; where E 2 Rm£p; and D 2 Rp£p is non-
singular,

B3 The matrix F 2 Rm£(m¡p) is such that its columns span the nullspace of
C;

B4
£

E F
⁄ 2 Rm£m is orthogonal,

B5 The columns of N 2 Rn£(n¡m+p) span the nullspace of F T B:

The exact form of the factorization of C in B2 is clearly not relevant and, also,
clearly not unique { a spectral decomposition is a possibility.

Theorem 4.1. Assume that A2-A6 and B1-B5 hold, then the matrix P¡1A
has

† an eigenvalue at 1 with multiplicity 2m ¡ p; and

† n ¡ m + p eigenvalues which are deflned by the generalized eigenvalue
problem

NT
¡
A + BT ED¡1ET B

¢
Nz = ‚N

¡
G + BT ED¡1ET B

¢
Nz:

This accounts for all of the eigenvalues.

Proof. Any y 2 Rm can be written as y = Eye + Fyf : Substituting this into

the generalized eigenvalue problem (4) and premultiplying by

2
4

I 0
0 ET

0 F T

3
5 we

obtain
2
4

A BT E BT F
ET B ¡D 0
F T B 0 0

3
5

2
4

x
ye

yf

3
5 = ‚

2
4

G BT E BT F
ET B ¡D 0
F T B 0 0

3
5

2
4

x
ye

yf

3
5 : (14)

Noting that the (3,3) block has dimension (m¡p)£(m¡p) and is a zero matrix
in both coe–cient matrices, we can apply Theorem 2.1 from [15] to obtain that
P¡1A has

† an eigenvalue at 1 with multiplicity 2(m ¡ p); and

† n ¡ m + 2p eigenvalues which are deflned by the generalized eigenvalue
problem

N
T

•
A BT E

ET B ¡D

‚
Nwn = ‚N

T
•

G BT E
ET B ¡D

‚
Nwn; (15)
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where N is an (n + p) £ (n ¡ m + 2p) basis for the nullspace of
£

F T B 0
⁄ 2

R(m¡p)£(n+p); and •
x
ye

‚T

= Nwn +
•

BT F
0

‚
wb:

Letting N =
•

N 0
0 I

‚
; then (15) becomes

•
NT AN NT BT E
ET BN ¡D

‚ •
wn1

wn2

‚
= ‚

•
NT GN NT BT E
ET BN ¡D

‚ •
wn1

wn2

‚
: (16)
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† j (0 • j • n) eigenvectors of the form
£

xT yT
⁄

that correspond to the
case ‚ 6= 1:

Proof. Proof of the form and linear independence of the m + i + j eigenvalues
obtained in a similar manner to the proof Theorem 3.2.

To show that both the lower and upper bounds on the number of linearly
independent eigenvectors can be attained we need only consider variations on
Examples 2.5 and 2.6 from [15].

Example 4.1 (minimum bound). Consider the matrices

A =

2
664

1 2 1 0
2 2 0 1
1 0 ¡1 0
0 1 0 0

3
775 ; P =

2
664

1 3 1 0
3 4 0 1
1 0 ¡1 0
0 1 0 0

3
775 ;

such that m = 2; n = 2 and p = 1: The preconditioned matrix P¡1A has an
eigenvalue at 1 with multiplicity 4; but only two linearly independent eigenvectors
which arise from case (1) of Theorem 4.2. These eigenvectors may be taken to
be

£
0 0 1 0

⁄T and
£

0 0 0 1
⁄T

:

Example 4.2 (maximum bound). Let A 2 R4£4
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From the earlier eigenvalue derivation, it is evident that the characteristic
polynomial of the preconditioned linear system (18) is

¡P¡1A ¡ I
¢2m¡p

n¡m+pY

i=1

¡P¡1A ¡ ‚iI
¢
:

In order to prove the upper bound on the Krylov subspace dimension, we need to
show that the order of the minimum polynomial is less than or equal to minfn¡
m+p+2; n+mg: Expanding the polynomial

¡P¡1A ¡ I
¢ Qn¡m+p

i=1

¡P¡1A ¡ ‚iI
¢

of degree n + 1; we obtain
•

(£1 ¡ I)
Qn¡m+p

i=1 (£1 ¡ ‚iI) 0
£2

Qn¡m+p
i=1 (£1 ¡ ‚iI) 0

‚
:

Since G+BT ED¡1ET B is positive deflnite, £1 has a full set of linearly inde-
pendent eigenvectors and is diagonalizable. Hence, (£
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Figure 1: Distribution of the eigenvalues of P¡1A for various choices of C.

interior-point method for such problems. We shall set G = diag(A); C =
diag(0; : : : ; 0; 1; : : : ; 1) and vary the number of zeros on the diagonal of C so as
to change its rank.

In Figure 1, we illustrate the change in the eigenvalues of the preconditioned
system P¡1A for three difierent choices of C. The eigenvalues are sorted so
that

‚1 ‚ ‚2 ‚ : : : ‚ ‚n+m:

When C = 0, we expect there to be at least 2m unit eigenvalues [15]. We
observe that our example has exactly 2m eigenvalues at 1. From Theorem 3.1,
when C = I there will be at least m unit eigenvalues. Our example has exactly
m unit eigenvalues, Figure 1.

When C has rank m
2 ; then the preconditioned system P¡1A has at least 3m

2
unit eigenvalues, Theorem 4.1. Once again the number of unit eigenvalues for
our example is exactly the lower bound given by the theorem.

Now suppose that we use (full) GMRES preconditioned by our extended
constraint preconditioner with G = diag(A) and vary the rank of C by changing
the number of 1s along the diagonal of C (all other entries are zero). Figure 2
shows that with this choice of G there is a strong correlation between the upper
bound on the Krylov subspace dimension and the number of iterations required
to reduce the residual by at least a factor of 10¡12: This is an extreme example
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Figure 2: Comparison of upper bound on the Krylov subspace dimension and
the number of iterations required to reduce the residual by 10¡12:

and, as we will see in the following results, the number of iterations is often a
lot lower than the upper bound on the Krylov subspace dimension.

Let us compare flve difierent approaches for solving problems of the form (1).
The matrix C is set to have rank dm=2e and to be diagonal with just entries of 0
and 1, as above. The indeflniteness of the matrix suggests the use of MINRES;
we shall use the unpreconditioned version, although positive deflnite precondi-
tioning could be employed, see [23]. We note that unpreconditioned MINRES
is equivalent (in exact arithmetic) to unpreconditioned GMRES for these exam-
ples because A
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Problem m n MINRES GMRES(I) GMRES(D) GMRES( eA) PPCG(D) PPCG( eA)
CVXQP1 M 500 1000 | 547 251 396 95 90
CVXQP2 M 750 1000 | 623 240 192 82 31
GOULDQP2 S 349 699 108 23 20 76 10 1
KSIP 1001 1021 41 9 1 13 1 1
MOSARQP1 700 3200 147 57 10 30 8 3

Table 1: Comparison of difierent Krylov subspace methods and preconditioners
for some of the CUTEr test problems

(20) which we denote by PPCG( eA). Dollar, Gould, Schilders and Wathen show
that the PPCG( eA) method will terminate (with exact arithmetic) in at most
minf2m; n ¡ m +

§
m
2

¤g + 1 iterations.
The saddle point systems are all preprocessed such that the flrst
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Figure 3: Comparison of the number of PPCG iterations for C = fiI and varying
fi: The right hand sides have been set to be equal to the sum of the columns of
A.

the possible use of implicit-factorization constraint preconditioners which only
require small factorizations to be carried out [7, 8, 9]. Dollar, Gould, Schilders
and Wathen also consider how G might be chosen to further increase the number
of eigenvalues at 1 [7].

6 Conclusions

In this paper, we investigated a class of preconditioners for regularized saddle
point matrix systems that incorporate the (1,2), (2,1) and (2,2) blocks of the
original matrix. We showed that the inclusion of these blocks in the precondi-
tioner clusters at least 2m ¡ p eigenvalues at 1, regardless of the structure of
G: However, the standard convergence theory for Krylov subspace methods is
not readily applicable because, in general, P¡1A does not have a complete set
of linearly independent eigenvectors. Using a minimum polynomial argument,
we found a general (sharp) upper bound on the number of iterations required
to solve linear systems of the form (1).

To conflrm the analytical results of this paper we used a subset of problems
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Figure 4: Comparison of the number of PPCG iterations for C = fiI and varying
fi: The right hand side is a random vector.

from the CUTEr test set. We flrstly used the CVXQP1 S problem and varied
the rank of C to conflrm the lower bound on the number of unit eigenvalues
and the upper bound on the Krylov subspace dimension. We also compared
MINRES for the unpreconditioned matrix system with the GMRES and PPCG
methods where the preconditioner incorporate the (1,2), (2,1) and (2,2) blocks
of the original matrix. We observed that the preconditioned methods resulted
in a considerable reduction in the number of iterations required to reach our
desired tolerance. Since GMRES and PPCG minimize difierent quantities, the
number of iterations required may vary although the same preconditioner is
used; indeed, we observe this in our results. We also conflrmed that as the
entries of C approach zero the number of PPCG iterations will decrease because
of the additional clustering of eigenvalues around.

We have assumed that the sub-matrices B; BT and ¡C in (1) are exactly
reproduced in the preconditioner. For truly large-scale problems this will be
unrealistic [4, 5] but the theorems in this paper may still be of some interest
in the inexact setting as a guide for choosing preconditioners. We wish to
investigate this possibility in our future work.
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