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Abstract 
 
 

In this report we will discuss some numerical techniques for approximating the 

Shallow Water equations.  In particular we will discuss finite difference schemes, 

adaptations of Roe’s approximate Riemann solver and the Q-Schemes of 

Bermudez & Vazquez with the objective of accurately approximating the solution of 

the Shallow Water equations.  We consider four different test problems for the 

Shallow Water equations with each test problem making the source term more 

significant, i.e. the variation of the Riverbed becomes more pronounced, so that 

the different approaches discussed in this report can be rigorously tested.  A 

comparison of the different approaches discussed in this report will also be made 

so that we may determine which approach produced the most accurate numerical 

results overall. 

 
 
The work contained in this report has been carried out as part of the Oxford / Reading 

Institute for Computational Fluid Dynamics and was funded by the Engineering and Physical 

Science Research Council and HR Wallingford under a CASE award. 







 3 

which has eigenvalues  

 
ghu +=λ1   and  ghu −=λ2  

 
and eigenvectors 
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−
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ghu
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All of the numerical approaches discussed will derive numerical schemes that are 

either first order, second order or flux-limited second order schemes (see 

LeVeque[10], Kroner[8] and Sweby[14]).  In Chapter 4 the different numerical 

approaches discussed in Chapter 3 will be compared by using the four test problems 

so that we may determine which approach produced the most accurate numerical 

results overall.  
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which are illustrated in Figure 2-1.  In Figure 2-1, the discontinuity at x = 0.5 

represents a barrier, which separates the two initial river heights and is removed at t = 

0.  Walls are present at x = 0 and at x = 1 resulting in reflection at both boundaries.   

Note that, for this test problem, if 2.7
1

0

>
φ

 then both eigenvalues of )(wA are of the 

same sign and the downstream flow is supercritical.  If 2.7
1

0

<
φ

then the eigenvalues 

of )(wA  are of opposite sign and the downstream flow is subcritical.  If the 
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and the wave speed of the discontinuity created at x = 0 is 

S = 2.957918120187525. 

For a more in depth analysis on how the value of S was obtained see Glaister[3] and 

Stoker[13]. 

 

2.2 Problem B - The Dam-Break Problem on a Variable 

Depth Riverbed 

This test problem is similar to Problem A but the riverbed is no longer of constant 

depth, resulting in ( ) 0≠′ xH  for some values of x, which means that a source term is 

present, i.e. 
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For this test problem, the riverbed is defined as 

⎪
⎩

⎪
⎨

⎧
≤≤⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −π

=

otherwise                                         0

5

3

5

2
    if    1

2

1
10cos

8

1
)(

xx
xB  

 
and we have initial conditions 

u(x,0) = 0  and  ( )
( )
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⎪
⎩

⎪⎪
⎨

⎧

≤<−φ

≤≤−
=

1
2

1
    if 

2

1
0    if      1

0,

0 x   xB

xxB
xh , 



 7





 9 

techniques for approximating the Shallow Water Equations so that we can apply the 

different numerical techniques to the four test problems. 

 

Initial Conditions for Problem A
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Initial Conditions for Problem B
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3 Numerical Schemes  

 
There are a variety of numerical techniques for approximating (1.1), e.g. finite 

element methods, finite volume methods, etc.  In this report, we will discuss the finite 

difference approach (see LeVeque[10] and Kroner[8]), adaptations of Roe’s 

approximate Riemann solver (see Glaister[4], Hubbard[6] and Roe[12]) and the Q-

Schemes of Bermudez & Vazquez[1].   

These approaches will be used to derive first order and second order numerical 

schemes where if a numerical scheme is first order then the scheme is dissipative and 

if a numerical scheme is second order then the scheme is dispersive (see Figure 3-1).  

Dissipation occurs when the travelling wave’s amplitude decreases resulting in the 

numerical solution being smeared.  Dispersion occurs when waves travel at different 

wave speeds and results in oscillations being present in the numerical results.  Both 

dissipation and dispersion can cause very significant errors in the numerical results, 

see Figure 3-1, and can sometimes give completely inaccurate numerical results.   

One way to minimise dissipation and dispersion is to use a numerical method which 

satisfies the Total Variational Diminishing property (see Sweby[14] and Harten[5]).  

Flux-limiter methods satisfy the TVD property and switch between a second order 

approximation when the region is smooth and a first order approximation when near a 

discontinuity.  Flux-limiter methods will also be applied to the different numerical 

approaches so that oscillations present in the numerical solution can be minimised.   
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Numerical Results of an Advection Test Problem using First and 
Second Order Finite Difference Schemes with the Exact Solution.
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Figure 3-1: Illustration of Dispersion and Dissipation 

 
 
 
 
 
 
 
 
 
 
 
 
     
    
 
 
 
 
       
 
 
 
 
 

Figure 3-2: The Mesh 
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3.2 Finite Difference Method 
 
One approach widely used to numerically approximate (1.1) is the finite difference 

method.  This method involves replacing the derivatives of (1.1) with finite difference 

approximations, e.g. 

tt

n
i

n
i

Δ
−=

∂
∂ + www 1

  

which is a forward difference approximation in time, to obtain a finite difference 

scheme.  Great care must be taken when using finite differences to construct a finite 

difference scheme as we need to ensure that the scheme is conservative.  A finite 

difference scheme that is not conservative may propagate discontinuities at the wrong 

wave speed, if at all, giving inaccurate numerical results.  To ensure we obtain a 

conservative scheme, we only construct finite difference schemes of the form 

[ ]FFww *
2/1

*
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1
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+ −
Δ
Δ−= ii

n
i

n
i

x

t
,             (3.1) 

where F*  is called the numerical flux function.  Notice that (3.1-13.2(e93.2(.)-1)24a0.20p 137.8 32F(()-a0.20p 1>actmce t-4 
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Name of Flux-limiter φ(θ) 
Minmod φ(θ) = max(0,min(1,θ)) 

Roe’s Superbee φ(θ) = max(0,min(2θ,1),min(θ,2)) 

van Leer ( )
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A semi-implicit approach of (S-3a) can be obtained by approximating the source term 

at tn+1 instead of at tn, i.e. 
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and by substituting into (3.8) and using (3.5), we may obtain 
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i) The approximate C-property, the numerical scheme must be at least 

second order accurate when applied to the quiescent flow case, i.e. u ≡ 

0 and h ≡ H. 

ii) The exact C-property, the numerical scheme must be exact when 

applied to the quiescent flow case, i.e. u ≡ 0 and h ≡ H.  

Hubbard’s approach and Roe’s scheme with source term decomposed all satisfy the 

exact C-property and should produce very accurate numerical results.  However, 

Roe’s scheme with source term added does not even satisfy the approximate C-

property and may give misleading results as the source term becomes significant. 

 

3.4 Q-Schemes of Bermudez & Vazquez 
 
Bermudez & Vazquez[1] discussed a variety of Q-Schemes, which numerically 

approximate (1.1).  All of the Q-Schemes discussed were used with the following first 

order equation 
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and Q is a matrix calculated by using a certain Q-Scheme.  Bermudez & Vazquez[1] 

discussed a variety of Q-Schemes but generally concentrated on the Q-scheme of van 

Leer and a Q-Scheme which is equivalent to Roe’s first order scheme (S-3c).  

The Q-Scheme of van Leer is 
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The Q-Scheme that is equivalent to Roe’s first order scheme is 
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4 Numerical Results

In this chapter, we will apply the schemes discussed in Chapter 3 and listed in Table

4-1 to the four test problems discussed in Chapter 2 to find out which approach

produces the most accurate results.  We will not discuss the results of the semi-

implicit approaches as they produced almost identical results to the explicit

approaches.  Also, the numerical results of Bermudez & Vazquez’s Q-Schemes will

not be discussed as the two Q-Schemes produced almost identical results to Roe’s first

order scheme with source term decomposed, i.e. (S-3b).

For the first three test problems, step-sizes Δx = 0.001 and Δt = 0.0001 will be used

with a final time of t = 0.1.  A comparison will be made at t = 0.1 and numerical

results will also be shown for t = 0.01m, where m = 0 to 10.

For test Problem D, step-sizes Δx = 2800 and Δt = 1 will be used with a bed length of

L = 648,000m and a final time of t = 10,800s.  A comparison will be made at t =

10,800s and numerical results will also be shown for t = 1080m, where m = 0 to 10.

Name Of Approach Reference No. Order Paper
Lax-Friedrichs (S-1) 1 -
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Only first order and flux-limited second order numerical results will be discussed and

the Minmod flux-limiter will be used with all flux-limited second order approaches.

4.1 First Order Comparison

4.1.1 Numerical Results for Problem A

For this test problem, no source term is present so schemes (S-3a) and (S-3b) are the

same.  Now, by using schemes (S-1) and (S-3b) to approximate Problem A and

comparing with the exact solution, we may obtain the numerical results in Figure 4-1a

and Figure 4-1b.  Here, we can see that Roe’s scheme is more accurate than the Lax-

Friedrichs approach since the Lax-Friedrichs approach is more dissipative than Roe’s

scheme.  Also, the Lax-Friedrichs scheme suffered badly from oscillations if larger

step-sizes were used whereas Roe’s scheme remained accurate but became more

dissipative.

4.1.2 Numerical Results for Problem B

For this test problem, a source term is now present so approaches (S-3a) and (S-3b)

are no longer equivalent.  By using schemes (S-1), (S-3a) and (S-3b) to approximate

Problem B, the results in Figure 4-2a to Figure 4-3b were obtained.  Here we can see

that Roe’s scheme with source term decomposed has produced the most accurate

results.  Roe’s scheme with source term added produced almost identical results to

Roe’s scheme with source term decomposed showing that, for Problem B, adding a

source term approximation to Roe’s scheme produces sufficiently accurate results.

The Lax-Friedrichs approach produced the least accurate results suffering badly from

dissipation and the approach also misplaced the disturbance caused by the riverbed.
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4.1.3 Numerical Results for Problem C

For this test problem, the source term is becoming more significant, i.e. the variation

in the riverbed is becoming more pronounced, which may cause some schemes to

produce inaccurate results.  By using approaches (S-1), (S-3a) and (S-3b) to

approximate Problem C, the results in Figure 4-4a to Figure 4-7b were obtained.

Here, we can see that Roe’s scheme with source term decomposed has produced the

most accurate results but the results are no longer almost identical to Roe’s scheme

with source term added.  Adding the source term in this case has produced movement

for 0.3 > x > 0.55 whereas decomposing the source term has produced no movement

for 0.3 > x > 0.55. This is because Roe’s scheme with source term decomposed

satisfies the exact C-property whereas Roe’s scheme with source term added does not.

The Lax-Friedrichs approach has produced the least accurate results due to the

scheme suffering badly from dissipation and the scheme has also produced more

movement than Roe’s scheme with source term added for 0.3 > x > 0.55.  Also, from

Figure 4-7b we can see that the Lax-Friedrichs approach has started producing

oscillations at the peak of the pulse even though small step-sizes have been used.

4.1.4 Numerical Results for Problem D

For this test problem, the source term is very difficult to approximate accurately

which may cause some approaches to produce very inaccurate numerical results.  By

applying schemes (S-1), (S-3a) and (S-3b) to Problem D, the results in Figure 4-8a to

Figure 4-11b were obtained.  Here, we can see that Roe’s scheme with source term

decomposed has produced the most accurate results since it was the only approach not

to produce movement after x = 216,000m at t = 10,800s.  This is because the

numerical scheme satisfies the exact C-property whereas the other approaches do not

even satisfy the approximate C-property.  Roe’s scheme with source term added was
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the second most accurate due to the approach producing movement after x = 216,000

at t = 10,800s.  The Lax-Friedrichs approach failed to accurately approximate

Problem D at all due to the scheme producing oscillations over the whole domain.

4.1.5 Overall Comparison of First Order Approaches

From the results of this sub-section, we have seen that Roe’s scheme with source term

decomposed has produced very accurate results for all test problems suffering only

slightly from dissipation. Roe’s scheme with source term added produced accurate

numerical results for the first two test problems, but as the source term became more

significant, the numerical scheme started to produce less accurate results.  In Problem

D, Roe’s scheme with source term added produced movement after x = 216,000 at t =

10,800s making the scheme very inaccurate.  The Lax-Friedrichs approach is accurate

for the most basic test problems but only when sufficiently small step-sizes are used

otherwise the scheme suffers from oscillations.  Also, as the source term became

significant the Lax-Friedrichs approach became impractical suffering badly from

oscillations even when small step-sizes were used.  Hence, Roe’s scheme with source

term decomposed produced the most accurate results for all test problems in the first

order case since it was the only approach to satisfy the exact C-property.

4.2 Flux-Limited Second Order Comparison

4.2.1 Numerical Results for 
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4.2.2 Numerical Results for Problem B

By using approaches (S-2), (S-3a) and (S-4) to approximate Problem B, the results in

Figure 4-13a to Figure 4-14b were obtained.  Here, we can see that Roe’s scheme with
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4.2.4 Numerical Results for Problem D

Now, by using approaches (S-2), (S-3a) and (S-4) to approximate Problem D, the

results in Figure 4-20a to Figure 4-23b were obtained.  Here, we can see that

Hubbard’s approach was the only approach that did not produce movement after x =

216,000m at t = 10,800s.  Roe’s scheme with source term added and LeVeque &

Yee’s MacCormack approach produced very similar results but both produced

movement after x = 216,000m at t = 10,800s.  Hence, Hubbard’s produced the most

accurate results.

4.2.5 Overall Comparison of the Flux- Limited Second

Order Approaches

From the results of this sub-section, we have seen that Hubbard’s approach has

produced the most accurate results for all test problems producing very accurate

results even for Problem D.  LeVeque & Yee’s MacCormack approach, Roe’s scheme

with source term added and Hubbard’s approach all produced almost identical results

for the first two test problems.  However, as the source term became more significant,

LeVeque & Yee’s MacCormack approach and Roe’s scheme with source term added

produced less accurate results but still produced very similar results due to both

approaches adding a source term approximation on.  When the source term became

significant and a larger step-size was used, the MacCormack approach and Roe’s

scheme with source term added both became impractical but Hubbard’s approach still

produced very accurate numerical results.
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First Order Numerical Results:
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R o e ' s  S c h e m e  w i t h  S o u r c e  T e r m  A d d e d  a n d  h x  =  1 0 0 0 ,  h t  =  1  a n d  t  =  0  t o  1 0 8 0 0 . 0 1 0 2 0 3 04 05 06 07 0
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Flux-Limited Second Order Numerical Results:
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5 Conclusion

In Chapter 4, it was shown that Roe’s scheme with source term decomposed and
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produced the most oscillations, followed by van Leer’s flux-limiter and the Minmod

flux-limiter has produced no oscillations.  This suggests that applying a flux-limiter to

the source term approximation when the source term is significant can create

oscillations in the numerical results.  However, if we do not apply a flux-limiter to the

source term approximation but we do to the conservation law then we will no longer

be able to obtain a numerical scheme which satisfies the C-property of Bermudez &

Vazquez[1].  The only solution at present is to use the Minmod flux-limiter with

Hubbard’s approach or to use Roe’s first order scheme with source term decomposed.

Throughout this report, we have seen that adding a source term approximation can

produce accurate numerical results but as the source term becomes significant, adding

a source term approximation can give very inaccurate numerical results.  We have

also shown that by decomposing the source term as well as the conservation law, we

may obtain very accurate numerical results for the first order case.  However, when

applying flux-limiters to the source term as well as the conservation law to ensure the

numerical scheme satisfies the exact C-property, oscillations can occur in the

numerical solution depending on which flux-limiter is used.
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