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Using Constraint Preconditioners with Regularized
Saddle-Point Problems

H. S. Dollar1, N. I. M. Gould2, W. H. A. Schilders3 4

and A. J. Wathen5

Abstract

The problem of flnding good preconditioners for the numerical solution
of a certain important class of indeflnite linear systems is considered.
These systems are of a 2 by 2 block (KKT) structure in which the (2,2)
block (denoted by ¡C) is assumed to be nonzero.

In Constraint preconditioning for indeflnite linear systems, SIAM J.
Matrix Anal. Appl., 21 (2000), Keller, Gould and Wathen introduced the
idea of using constraint preconditioners that have a speciflc 2 by 2 block
structure for the case of C being zero. We shall give results concerning
the spectrum and form of the eigenvectors when a preconditioner of the
form considered by Keller, Gould and Wathen is used but the system
we wish to solve may have C 6= 0: In particular, the results presented
here indicate clustering of eigenvalues and, hence, faster convergence of
Krylov subspace iterative methods when the entries of C are small; such
a situations arise naturally in interior point methods for optimization and
we present results for such problems which validate our conclusions.

1 Introduction

The solution of systems of the form
•

A BT

B ¡C

‚

| {z }
A

C

•
x
y

‚
=

•
c
d

‚

| {z }
b

; (1)

where A 2 Rn£n, C 2 Rm£m are symmetric and B 2 Rm£n, is often required
in optimization and other various flelds, Section 1.1. We shall assume that
0 < m • n and B is of full rank. Various preconditioners which take the
general form

PC =
•

G BT

B ¡C

‚
; (2)
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where G 2 Rn£n is some symmetric matrix, have been considered (for example,
see [3, 4, 5, 8, 18, 23].) When C = 0; (2) is commonly known as a constraint
preconditioner [2, 16, 17, 19]. In practice C is often positive semi-deflnite (and
frequently diagonal).

As we will observe in Section 1.1, in interior point methods for constrained
optimization a sequence of such problems are solved with the entries in C gen-
erally becoming small as the optimization iteration progresses. That is, the
regularization is successively reduced as the iterates get closer to the minimum.
For the Stokes problem, the entries of C are generally small since they scale
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track solutions to the (perturbed) optimality conditions

rf(x) = BT (x)y and Y c(x) = „e; (5)

where y are Lagrange multipliers (dual variables), e is the vector of ones,

B(x) = rc(x) and Y = diagfy1; y2; : : : ; y bmg;

as the positive scalar parameter „ is decreased to zero. The Newton correction
(¢x; ¢y) to the solution estimate (x; y) of (5) satisfy the equation [3]:

•
A(x; y) ¡BT (x)
Y B(x) C(x)

‚ •
¢x
¢y

‚
=

• ¡rf(x) + BT (x)y
¡Y c(x) + „e

‚
;

where

A(x; y) = rxxf(x)¡
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2 Preconditioning A
C

by P
Suppose that we precondition A

C
by P; where P is deflned in (3). The decision

to investigate this form of preconditioner is motivated in Section 1. We shall
use the following assumptions in our theorems:

A1 B 2 Rm£n (m < n) has full rank,

A2 C has rank p > 0 and is factored as EDET ; where E 2 Rm£p and has
orthonormal columns, and D 2 Rp£p is non-singular,

A3 If p < m; then F 2 Rm£(m¡p) is such that its columns form a basis for the
nullspace of C and the columns of N 2 Rn£(n¡m+p) form a basis of the
nullspace of F T B;

A4 If p = m; then N = I 2 Rn£n:

Theorem 2.1. Assume that
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where x 6= 0 satisfles Ax = Gx: There is no guarantee that such an eigenvector
will exist, and therefore no guarantee that there are any unit eigenvalues.

If ‚ 6= 1; then Equation (8) and the non-singularity of C gives

y = (1 ¡ ‚) C¡1Bx; x 6= 0:

By substituting this into (7) and rearranging we obtain the quadratic eigenvalue
problem

¡
‚2BT C¡1B ¡ ‚

¡
G + 2BT C¡1B

¢
+ A + BT C¡1B

¢
x = 0: (9)

The non-unit eigenvalues of (6) are therefore deflned by the flnite (non-unit)
eigenvalues of (9). Note that since BT C¡1B has rank m; (9) has 2n¡(n¡m) =
n + m flnite eigenvalues, but at most n linearly independent eigenvectors [22,
Section 3.1]. Hence, P¡1A

C
has at most n linearly independent eigenvectors

associated with the non-unit eigenvalues when p = m:
Now, assumption A2 implies that

C¡1 = ED¡1ET ;

and, hence, letting wn1 = x we complete our proof for the case p = m:

Case 0 < p < m Any y 2 Rm can be written as y = Eye + Fyf : Substituting
this into (6) and premultiplying the resulting generalized eigenvalue problem by

2
4

I 0
0 ET

0 F T

3
5 ;

we obtain
2
4

A BT E BT F
ET B ¡D 0
F T B 0 0

3
5

2
4

x
ye

yf

3
5 = ‚

2
4

G BT E BT F
ET B 0 0
F T B 0 0

3
5

2
4

x
ye

yf

3
5 : (10)

Noting that the (3,3) block has dimension (m¡p)£(m¡p) and is a zero matrix
in both coe–cient matrices, we can apply Theorem 2.1 from [16] to obtain:

† P¡1A
C

has an eigenvalue at 1 with multiplicity 2(m ¡ p);

† the remaining n¡m+2p eigenvalues are deflned by the generalized eigen-
value problem

N
T

•
A BT E

ET B ¡D

‚
Nwn = ‚N

T
•

G BT E
ET B 0

‚
Nwn; (11)

where N is an (n+p)£(n¡m+2p) basis for the nullspace of
£

F T B 0
⁄

:
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One choice for N is

N =
•

N 0
0 I

‚
:

Substituting this into (11) we obtain the generalized eigenvalue problem
•

NT AN NT BT E
ET BN ¡D

‚ •
wn1

wn2

‚
= ‚

•
NT GN NT BT E
ET BN 0

‚ •
wn1

wn2

‚
: (12)

This generalized eigenvalue problem resembles that of (6) in the flrst case con-
sidered in this proof. Therefore, the non-unit eigenvalues of P¡1A

C
are equal

to the flnite (and non-unit) eigenvalues of the quadratic eigenvalue problem

0 = ‚2NT BT ED¡1ET BNwn1 ¡ ‚NT (G + 2BT ED¡1ET B)Nwn1

+NT (A + BT ED¡1ET B)Nwn1: (13)

Since NT BT ED¡1ET BN has a nullspace of dimension n ¡ m; this quadratic
eigenvalue problem has 2(n ¡ m + p) ¡ (n ¡ m) = n ¡ m + 2p flnite eigenvalues
[22].

The following numerical examples illustrate how the rank of C dictates a
lower bound on the number of unit eigenvalues. In particular, Example 2.2
demonstrates that there is no guarantee that the preconditioned matrix has
unit eigenvalues when C is nonsingular.

Example 2.2 (C nonsingular).

Consider the matrices

A
C

=

2
4

1 0 1
0 1 0
1 0 ¡1

3
5 ; P =

2
4

2 0 1
0 2 0
1 0 0

3
5 ;

so that m = p = 1 and n = 2: The preconditioned matrix P¡1A
C

has eigenval-
ues at 1

2 ; 2¡p
2 and 2+

p
2: The corresponding eigenvectors are

£
0 1 0

⁄T
;£

1 0 (
p

2 ¡ 1)
⁄T

and
£

1 0 ¡(
p

2 + 1)
⁄T

respectively. The precondi-
tioned system P¡1AC has all non-unit eigenvalues, but this does not go against
Theorem 2.1 because m ¡ p = 0: With our choices of AC and P; and setting
D = [1] and E = [1] (C = EDET ), the quadratic eigenvalue problem (13) is

µ
‚2

•
1 0
0 0

‚
¡ ‚

•
4 0
0 2

‚
+

•
2 0
0 1

‚¶ •
u1

u2

‚
= 0:

This quadratic eigenvalue problem has three flnite eigenvalues which are ‚ = 1
2 ;

‚ = 2 ¡ p
2 and ‚ = 2 +

p
2:

Example 2.3 (C semideflnite).
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Consider the matrices

AC =

2
664

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 ¡1

3
775 ; P =

2
664

2 0 1 0
0 2 0 1
1 0 0 0
0 1 0 0

3
775 ;

so that m = 2; n = 2 and p = 1: The preconditioned matrix P¡1A
C

has two unit
eigenvalues and a further two at ‚ = 2 ¡ p

2 and ‚ = 2 +
p

2: There is just one
linearly independent eigenvector associated with the unit eigenvector; specifl-
cally this is

£
0 0 1 0

⁄T
: For the non-unit eigenvalues, the eigenvectors

are
£

0 1 0 (
p

2 ¡ 1)
⁄T

and
£

0 1 0 ¡(
p

2 + 1)
⁄T

respectively.
Since 2(m ¡ p) = 2; we correctly expected there to be at least two unit

eigenvalues, Theorem 2.1. The remaining eigenvalues will be deflned by the
quadratic eigenvalue problem (13):

µ
‚2

•
0 0
0 1

‚
¡ ‚

•
2 0
0 4

‚
+

•
1 0
0 2

‚¶ •
u1

u2

‚
= 0; u2 6= 0;

where D = [1] and E =
£

0 1
⁄T are used as factors of C: This quadratic

eigenvalue problem has three flnite eigenvalues  14ues1 = 2;
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Proof.
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Rearranging we flnd that we require

wT
n1NT GNwn1 > wT

n1NT ANwn1

for all wn1 6= 0: Thus we need only scale any positive deflnite G such that
wT

n1NT GNwn1

wT
n1NT Nwn1

> kAk2
2 for all Nwn1 6= 0 to guarantee that (16) is positive for

all wn1 such that kwn1kNT AN+ eD = 1: For example, we could choose G = fiI;

where fi > kAk2
2 :

Using the above in conjunction with Theorem 2.1 we obtain the following
result:

Theorem 2.5. Suppose that A1{A4 hold and eD is as deflned in (15). Further,
assume that A + eD and G + 2 eD are symmetric positive deflnite, eD is symmetric
positive semideflnite and

min
n

(zT Gz)2 + 4(zT eDz)(zT Gz + zT eDz ¡ 1) : kzkA+ eD = 1
o

> 0; (17)

then all the eigenvalues of P¡1AC are real and positive. (Condition (17) is
guaranteed to hold if G = fiI; where fi > kAk2

2 :) The matrix P¡1AC also has
m ¡ p + i + j linearly independent eigenvectors. There are

1. m ¡ p eigenvectors of the form
£

0T yT
f

⁄T
that correspond to the case

‚ = 1;

2. i (0 • i • n) eigenvectors of the form
£

wT 0
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Theorem 2.1 also shows that the eigenvectors corresponding to ‚ 6= 1 take the
form

£
xT yT

⁄T
; where x corresponds to the quadratic eigenvalue problem

(9) and y = (1 ¡ ‚)C¡1Bx = (1 ¡ ‚)D¡1EBNx (since we can set D = C
and E = I). Clearly, there are at most n + m such eigenvectors. By our
assumptions, all of the vectors x deflned by the quadratic eigenvalue problem
(9) are linearly independent. Also, if x is associated with two eigenvalues, then
these eigenvalues must be distinct [22]. By setting wn1 = x and wn2 = y we
obtain j (0 • j • n + m) eigenvectors of the form given in statement 3 of the
proof.

It remains for us to prove that the i+j eigenvectors deflned above are linearly
independent. Hence, we need to show that

•
x

(1)
1 ¢ ¢ ¢ x

(1)
i

0 ¢ ¢ ¢ 0

‚
2
664

a
(1)
1
...

a
(1)
i

3
775 +

"
x

(2)
1 ¢ ¢ ¢ x

(2)
j

y
(2)
1 ¢ ¢ ¢ y

(2)
j

#
2
664

a
(2)
1
...

a
(2)
j

3
775 =

2
64

0
...
0

3
75 (18)

implies that the vectors a(1) and a(2) are zero vectors. Multiplying (18) by
P¡1A

C
; and recalling that in the previous equation the flrst matrix arises from

‚l = 1 (l = 1; ¢ ¢ ¢ ; i) and the second matrix from ‚l 6= 1 (l = 1; ¢ ¢ ¢ ; j) gives

•
x

(1)
1 ¢ ¢ ¢ x

(1)
i

0 ¢ ¢ ¢ 0

‚
2
664

a
(1)
1
...

a
(1)
i

3
775 +

"
x

(2)
1 ¢ ¢ ¢ x

(2)
j

y
(2)
1 ¢ ¢ ¢ y

(2)
j

#
2
664

‚
(2)
1 a

(2)
1

...
‚

(2)
j a

(2)
j

3
775 =

2
64

0
...
0

3
75 :

(19)
Subtracting (18) from (19) we obtain

"
x

(2)
1 ¢ ¢ ¢ x

(2)
j

y
(2)
1 ¢ ¢ ¢ y

(2)
j

#
2
664

(‚(2)
1 ¡ 1)a(2)

1
...

(‚(2)
j ¡ 1)a(2)

j

3
775 =

2
64

0
...
0

3
75 : (20)

Some of the eigenvectors x deflned by the quadratic eigenvalue problem (9)
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and

a
(2)
l = ¡a

(2)
l+k

1 ¡ ‚
(2)
l+k

1 ¡ ‚
(2)
l

; l = 1; : : : ; k:

Now y
(2)
l = (1 ¡ ‚

(2)
l )C¡1Bx

(2)
l for l = 1; : : : ; 2k: Hence, we require

(‚(2)
1 ¡ 1)2a

(2)
l C¡1Bx

(2)
l + (‚(2)

1 ¡ 1)2a
(2)
l+kC¡1Bx

(2)
l = 0; l = 1; : : : ; k:

Substituting in a
(2)
l = ¡a

(2)
l+k

1¡‚
(2)
l+k

1¡‚
(2)
l

and rearranging gives (‚(2)
l ¡ 1)a(2)

l =

(‚(2)
l+k ¡ 1)a(2)

l+k for l = 1; : : : ; k:
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From (25), it may be deduced that either ‚ = 1 or wm = 0: In the former case,
(23) and (24) may be simplifled to

QT

•
A BT E

ET B ¡D

‚
Qw = QT

•
G BT E

ET B 0

‚
Qw; (26)

where Q =
£

M N
⁄

and w =
£

wT
m wT

n

⁄
: Since Q is orthogonal, the

general eigenvalue problem (26) is equivalent to considering
•

A BT E
ET B ¡D

‚ •
w1

w2

‚
= ¾

•
G BT E

ET B 0

‚ •
w1

w2

‚
; (27)

where
£

wT
1 wT

2

⁄T 6= 0 if and only if ¾ = 1; and w1 2 Rn; w2 2 Rp: As
in the flrst case of this proof, nonsingularity of D and ¾ = 1 implies that
w2 = 0: There are m ¡ p linearly independent eigenvectors

£
0T 0T uT

f

⁄T

corresponding to w1 = 0; and a further i (0 • i • n) linearly independent
eigenvectors corresponding to w1 6= 0 and ¾ = 1:

Now suppose that ‚ 6= 1; in which case wm = 0: Equations (23) and (24)
yield

N
T

•
A BT E

ET B ¡D

‚
Nwn = ‚N

T
•

G BT E
ET B 0

‚
Nwn; (28)

M
T

•
A BT E

ET B ¡D

‚
Nwn + Ryf = ‚

•
M

T
•

G BT E
ET B 0

‚
Nwn + Ryf

‚
:(29)

The generalized eigenvalue problem (29) deflnes n ¡ m + 2p eigenvalues, where
j (0 • j • n ¡ m) of these are not equal to 1 and for which two cases have to
be distinguished. If wn = 0; then (28) and ‚ 6= 1 imply that yf = 0: In this
case no extra eigenvalues arise. Suppose that wn 6= 0; then, from the proof of
Theorem 2.1, the eigenvalues are equivalently deflned by (13) and

wn =
•

wn1

(1 ¡ ‚)D¡1ET BNwn1

‚
:

Hence, the j (0 • j • n ¡ m + 2l) eigenvectors corresponding to the non-unit
eigenvalues of P¡1A

C
take the form

£
0T wT

n1 wT
n2 yT

f

⁄T
:

Proof of the linear independence of these eigenvectors follows similarly to
the case of p = m:

Observing that the coe–cient matrices in (10) are of the form of those con-
sidered by Gould, Hribar and Nocedal [12], we could apply a projected precon-
ditioned conjugate gradient method to solve (1) if all the eigenvalues of P¡1AC

are real and positive and we have a decomposition of C as in A2. Theorem 2.5
therefore gives conditions which allow us to use such a method. Dollar gives
a variant of this method in which no decomposition of C is required, see [6,
Section 5.5]. The derivation of such a method bears close resemblance to that
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3 Convergence

In the context of this paper, the convergence of an iterative method under
preconditioning is not only in°uenced by the spectral properties of the coe–cient
matrix, but also by the relationship between m; n and p: We can determine an
upper bound on the number of iterations of an appropriate Krylov subspace
method by considering minimum polynomials of the coe–cient matrix.

Deflnition 3.1. Let A 2 R(n+m)£(n+m): The monic polynomial f of minimum
degree such that f(A) = 0 is called the minimum polynomial of A:

Krylov subspace theory states that iteration with any method with an opti-
mality property, e.g. GMRES, will terminate when the degree of the minimum
polynomial is attained, [21]. In particular, the degree of the minimum polyno-
mial is equal to the dimension of the corresponding Krylov subspace (for general
b), [20, Proposition 6.1].

Theorem 3.2. Suppose that the assumptions of Theorem 2.5 hold. The dimen-
sion of the Krylov subspace K(P¡1A

C
; b) is at most minfn¡m+2p+2; n+mg:

Proof. Suppose that 0 < p < m: As in the proof to Theorem 2.1, the generalized
eigenvalue problem can be written as

2
4

A BT E BT F
ET B ¡D 0
F T B 0 0

3
5

2
4

x
ye

yf

3
5 = ‚

2
4

G BT E BT F
ET B 0 0
F T B 0 0

3
5

2
4

x
ye

yf

3
5 : (30)

Hence, the preconditioned matrix P¡1AC can be written as

bP¡1 cA
C

=
•

£1 0
£2 I

‚
; (31)

where the precise forms of £1 2 R(n+p)£(n+p) and £2 2 R(m¡p)£(n+p) are
irrelevant.

From the earlier eigenvalue derivation, it is evident that the characteristic
polynomial of the preconditioned linear system (31) is

¡P¡1A
C

¡ I
¢2(m¡p)

n¡m+2pY

i=1

¡P¡1A
C

¡ ‚iI
¢
:

In order to prove the upper bound on the Krylov subspace dimension, we need to
show that the order of the minimum polynomial is less than or equal to minfn¡
m+2p+2; n+mg: Expanding the polynomial

¡P¡1A
C

¡ I
¢ Qn¡m+2p

i=1

¡P¡1A
C

¡ ‚iI
¢

of degree n ¡ m + 2p + 1; we obtain
•

(£1 ¡ I)
Qn¡m+2p

i=1 (£1 ¡ ‚iI) 0
£2

Qn¡m+2p
i=1 (£1 ¡ ‚iI) 0

‚
:
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Since the assumptions of Theorem 2.5 hold, £1 has a full set of linearly inde-
pendent eigenvectors and is diagonalizable. Hence, (£1 ¡ I)

Qn¡m+2p
i=1 (£1 ¡ ‚iI) =

0: We therefore obtain

¡P¡1AC ¡ I
¢ n¡m+2pY

i=1

¡P¡1AC ¡ ‚iI
¢

=
•

0 0
£2

Qn¡m+2p
i=1 (£1 ¡ ‚iI) 0

‚
:

(32)
If £2

Qn¡m+2p
i=1 (£1 ¡ ‚iI
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If –¡"
‡ ‚ 0; then

sµ
–

2‡

¶2

+
– ¡ "

‡
•

vuut2 max

(µ
–

2‡

¶2

;
– ¡ "

‡

)

=
p

2 max

(
–

2‡
;

s
– ¡ "

‡

)
:

If –¡"
‡ • 0; then the assumption –2 + 4‡(– ¡ ") ‚ 0 implies that

µ
–

2‡

¶2

‚ " ¡ –

‡
‚ 0:

Hence,
sµ

–

2‡

¶2

+
– ¡ "

‡
• –

2‡

<
p

2 max

(
–

2‡
;

s
" ¡ –

‡

)
:

Remark 3.4. The important point to notice is that if ‡ À – and ‡ À "; then
‚ … 1 in Theorem 3.3.

Theorem 3.5. Assume that the assumptions of Theorem 2.5 hold, then all the
eigenvalues of P ¡1AC are real and positive, and 2(m¡p) of them are guaranteed
to be equal to 1. In addition, the eigenvalues ‚ of (13) subject to ET BNu 6= 0;
will also satisfy

j‚ ¡ 1j = O(maxfkCk ; kG ¡ Ak
p

kCkg)

for small values of kCk :

Proof. That the eigenvalues of P ¡1A
C

are real and positive follows directly
from Theorem 2.5.

Suppose that C = EDET is a reduced singular value decomposition of C;
where the columns of E 2 Rm£p are orthogonal and D 2 Rp£p is diagonal with
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Premultiplying the quadratic eigenvalue problem (13) by uT gives

0 = ‚2uT eDu ¡ ‚(uT NT GNu + 2uT eDu) + (uT NT ANu + uT eDu): (33)

Assume that v = ET BNu and kvk = 1; where u is an eigenvector of the
above quadratic eigenvalue problem, then

uT eDu = vT D¡1v

=
v2

1

d1
+

v2
2

d2
+ : : : +

v2
m

dm

‚ vT v

d1

=
1

kCk :

Hence,
1

uT eDu
• kCk :

Let ‡ = uT eDu; – = uT NT GNu and " = uT NT ANu; then (33) becomes

‚2‡ ¡ ‚(– + 2‡) + " + ‡ = 0:

From Theorem 3.3, ‚ must satisfy

‚ = 1 +
–

2‡
§ „; „ •

p
2 max

(
–

2‡
;

s
j– ¡ "j

‡

)
:

Now – • c
°°NT GN

°° ; " • c
°°NT AN

°° ; where c is an upper bound on kuk
and u are eigenvectors of (13) subject to

°°ET BNu
°° = 1: Hence, the eigenvalues

of (13) subject to ET BNu 6= 0 satisfy

j‚ ¡ 1j = O(maxfkCk ; kG ¡ Ak
p

kCkg)

for small values of kCk :

The results of this theorem are not very surprising, but basic eigenvalue per-
turbation theorems such as Theorem 7.7.2 in [10] in conjunction with Theorem
2.3 of [16] are weaker than what we have established. Speciflcally, the structure
of our coe–cient matrix and preconditioner means that we are still guaran-
teed to have 2(m ¡ p) unit eigenvalues, whereas the more general eigenvalue
perturbation theorems would only imply that these eigenvalues will be close to
1.

Example 3.6 (C with small entries).
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Suppose that AC and P are as in Example 2.2, but C = [10¡a] for some
positive real number a: Setting D = [10¡a] and E = [1] (C = EDET ), the
quadratic eigenvalue problem (13) is

µ
‚2

•
10a 0
0 0

‚
¡ ‚

•
2 + 2 £ 10a 0

0 2

‚
+

•
1 + 10a 0

0 1

‚¶ •
xy

xz

‚
= 0:

This quadratic eigenvalue problem has three flnite eigenvalues: ‚ = 1
2 ;

‚ = 1 + 10¡a § 10¡a
p

1 + 10a:

For large values of a; ‚ … 1 + 10¡a § 10¡ a
2 ; the eigenvalues will be close to 1.

This clustering of part of the spectrum of P¡1A
C

will often translate into
a speeding up of the convergence of a selected Krylov subspace method, [1,
Section 1.3].

3.2 Numerical Examples

We will carry out several numerical tests to verify that, in practice, our theo-
retical results translate to a speeding up in the convergence of a selected Krylov
subspace method as the entries of C converge towards 0.

Example 3.7.

The CUTEr test set [13] provides a set of quadratic programming problems.
We shall use the problem CVXQP2 M in the following two examples. This
problem has n = 1000 and m = 250: \Barrier" penalty terms (in this case fi;
where fi is deflned below) are added to the diagonal of A to simulate systems that
might arise during an iteration of an interior-point method for such problems.
We shall set G = diag(A) (ignoring the additional penalty terms), and C = fiI;
where fi is a positive, real parameter that we will change.
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SQMR method doesn’t have an optimality property as was assumed in Sec-
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Figure 1: Comparison of number of iterations required when either (a) P or (b)
PC are used as preconditioners for C = fiI with GMRES, PPCG and SQMR
on the CVXQP2 M problem.
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Figure 2: Comparison of number of iterations required when either (a) P or (b)
PC are used as preconditioners for C = fiI with GMRES, PPCG and SQMR
on the CVXQP2 M problem.



22

10
−10

10
−5

10
0

0

100

200

300

400

500

600

700

α

ite
ra

tio
ns

PPCG

Figure 3: Number of PPCG iterations when either (a) P or (b) PC are used as
preconditioners for C = fiI on the AUG2DQP problem.

Figure 4: Number of PPCG iterations when either (a) P or (b) P
C

are used as
preconditioners for C = fi £ diag(0; : : : ; 0; 1; : : : ; 1); where rankC = bm=2c ; on
the AUG2DQP problem.
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These examples suggest that during pre-asymptotic iterations of an interior
point method for a nonlinear programming problem, we may need to use a
preconditioner of the form P

C
; but as the method proceeds there will be a point

at which we will be able to swap to using a preconditioner of the form P: From
this point onwards, we’ll be able to use the same preconditioner during each
iterative solve of the resulting sequence of saddle-point problems.

4 Conclusion and further research

In this paper, we have investigated a class of preconditioners for indeflnite linear
systems that incorporate the (1,2) and (2,1) blocks of the original matrix. These
blocks are often associated with constraints. We have shown that if C has rank
p > 0; then the preconditioned system has at least 2(m ¡ p) unit eigenvalues,
regardless of the structure of G: In addition, we have shown that if the entries
of C are very small, then we will expect an additional 2p eigenvalues to be
clustered around 1 and, hence, for the number of iterations required by our
chosen Krylov subspace method to be dramatically reduced. These later results
are of particular relevance to interior point methods for optimization.

The practical implications of the analysis of this paper in the context of
solving nonlinear programming problems will be the subject of a follow-up pa-
per. We will investigate the point at which the user should switch from using
a preconditioner of the form P

C
to that of P during an interior point method,

and how the sub-matrix G in the preconditioner should be chosen.
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