# The University of Reading

Radial Velocity Assimilation and E

#### Abstract

The assimilation of radial wind from #oppler radar into n/merical forecast models can improve weather predictions. Radial wind contains only the velocity component of wind moving along a radial line from the radar. Experiments were performed with a simple model 0ased on the shallow water e1/ation with no rotation. Radial velocity and geopotential o0servations were assimilated /sing a 3#4Var assimilation scheme. An o0servation operator was introd/ced for the o0servations to accommodate radial wind o0servations. A variety of experiments were performed in order to examine the effect of different parameters in finding a sol/tion close to the tr/th. The 1/antity and error of the o0servations affected the acc/racy of the analysis.

## 1 Introduction

#ata assimilation is a means of incorporating o0servations into a forecasting model% to ad5/st the sim/lation closer to reality% and create 0etter initial conditions for s/0se1/ent forecasts. Meteorological forecasting is ma6ing more and more /se of o0servation assimilation in n/merical weather prediction

 $\mathbf{x}_{0}^{k} = \mathbf{x}_{0}^{k-1} - \mathbf{x}_{0}^{k}$  where is the iteration n/m0er. These iterations constit/te the o/ter loop of the sol/tion Each o/ter loop involves improving the g/ess for  $\mathbf{x}_{0}$  which is /sed to r/n the nonlinear model to calc/late  $\mathbf{x}^{8}$ ; at each timestep %/sed in the incremental cost f/ntion 8:;.

Within each o/ter loop% the cost f/nction is minimised% /sing an iterative proced/re referred to as the inner loop. The minimisation is accomplished 0y finding the minim/m of the gradient of the cost f/nction. The gradient indicates the direction for each iteration of the inner loop to improve the estimate. The gradient of the cost f/nction is determined /sing an ad5oint model. The ad5oint model consists of the derivatives of the cost f/nction with respect to the varia0les. 'n this model% a 9eale restarted memoryless 1/asi4&ewtonian con5/gate gradient method is /sed for the minimisation% implemented 0y the (+&M'& ro/tine<sup>\$</sup>.

<or a solitary #oppler radar% the only radial velocity can 0e meas/red directly% i.e. the component of movement directed towards or away from the radar. <or example% in the case of a monotonic wind% the velocity will 0e negative on one side of the radar% positive on the other% and @ero at a tangent. <or the \$# case here% an o0servation operator was created as a diagonal matrix% where the velocity was m/ltiplied 0y 4\$ on one side of the radar% and m/ltiplied 0y \$\$ on the other side% so the diagonal elements of H wereC</p>

$$= \begin{cases} -\$ & ! & ! \\ \$ & ! & ! \end{cases}$$
8D;

where the location ! of the radar on the grid was specified% and ! represents the grid locations. <or simplicity% ! was ass/med to fall 0etween grid points% as the radar does not ma6e o0servations at it2s own location so this val/e wo/ld 0e @ero. +ff4diagonal elements of H wo/ld also 0e @ero. 'n a f/II ># wind field% the o0servation operator wo/ld map the velocity vector at any point to the position vector of the velocity with respect to the radar. The spatial extent and spatial resol/tion of o0servations co/ld 0e specified independently of the o0servation operator% for sim/lating limited range of #oppler velocities. Another consideration is that the spatial fre1/ency of the o0servations may not match that of the model grid.

'n this report section ! descri0es the model set/p lists the model parameters and associated val/es as were /sed in vario/s experiments. Section > descri0es the effect of vario/s parameters and descri0es the res/lts of several specific experiments.

 $<sup>\</sup>$  'n the A ( M T+MS pac6age availa0le from the EAMS software li0rary at gams.nist.gov

### 2 Model Parameters

The model has a one4dimensional domain of grid length !-- and grid spacing -.-\$. The timestep was F. !e4>. A r/n of the model providing \* and + everywhere provided !tr/th! for comparison with the analysis and was /sed to generate o0servations and the 0ac6gro/nd. The 0ac6gro/nd was the tr/th with a phase shift. +0sevations were sampled from the tr/th and then random noise was added according to the variance specified /nless perfect o0servations were 0eing /sed 8see section >.>;.

A range of experiments were cond/cted with the model<sup>®</sup> changing vario/s model parameters and o0servation choices. These parameters 8with range of val/es in 0rac6ets; incl/de<sup>C</sup>

\*resence of \* and, or + o0servations to 0e assimilated.

Range of o0servations of \* and, or + 2everywhere limited to 7- GxG\$7-;

Spatial fre1/ency of o0servations8every gridpoint in x or every \$-;

(orrelation length 8/sed for B; 8\$- to 7-;

Variance of o0servation errors 8/sed for R diagonal elements; 8-.--\$4-.-!;

&/m0er of assimilation time steps 8normally 7-% tried \$--;

<orecasting time steps &normally -% tried \$--;</pre>

9ac6gro/nd weight 8additional term to weight the 0ac6gro/nd term in the cost f/nction 83;; 8-.--\$4\$;

Vario/s parameters were also varied to test the effect on convergence.

+/ter loops% ideally more than re1/ired for convergence 8normally 7-% tried /p to \$7-;
Solver tolerance for convergence of the final sol/tion 8\$e4. H \$e4>;
&/m0er of conmin iterations 8the inner loop; 8!-- /s/ally% tried >-- and 3--;
'nner tolerance for convergence of cost f/nction and its gradient in conmin 8 2-.\$ 4-.7;;
+/ter tolerance for convergence within o/ter loop.8 8-.--74-.--\$;;
Solver max iterations for minimising the cost f/nction 8normally !--% /sed 7- for perfect o0servations;

+ther options.

9ac6gro/nd type H how the 0ac6gro/nd was calc/lated from the 8tr/th I phase error;

(ovariance 9 matrix type 8' or "aplace 8see 7;;

(ovariance R matrix type 8' or real i.e. /sing real variances of o0servations;

The parameters /sed in the vario/s trials and experiments are ta0/lated in Appendix \$. <or the main

set of experiments most trials are displayed graphically in Appendix !. Each graph has fo/r panels showing the 0ac6gro/nd% tr/th% and analysis for velocity 8\*; and for geopotential 8+;% the cost f/nction val/e and the cost f/nction relative gradient.

#### •( %**₽₽**₽ 0 🕀

#### Results 3

#### 3.1 Effect of some arameters! based on ex eriments

This section disc/sses 0riefly the effect of vario/s parameters which were noted in Section !. 'nitiailly vario/s experiments were r/n with different choices of parameters in order to select one entpand ps 333999 p Big + V, s/ita0le to act as a control experiment. The control is descri0ed as Trial \$ in the Appendices and /sed Itypipanovali/es for 1/antitative parameters and o0servations coinciding with all grid point locations. <or the s/0se1/ent trials% as listed in the Appendices% one or two parameters were varied. All were</pre> performed with the radar observation operator in place as whether the velicity observations were 2radial2 or not wo/ld not effect the analysis. The effect of vario/s parameters is now descri0ed.

'ncreasing the n/m0er of assimilation time steps visi0ly improved the analysis i.e. it more closely resem0led the tr/th. (hanging the n/m0er of time steps from 7- to \$-- 8as in trials \$:4\$F as shown in Appendix 1; lowered the final cost f/nction val/e and its gradient 0y an order of magnit/de Ot SEPR#00 Oeca/se the n/m0er of o0servation was do/Oled th/s a far more precise analysis co/Id 0e o0tained. 8 sA%x10 dx n0aA an td 3 property to the second to real R of the real R of the real R of the real R of the real R

R\$P b Tobe analysis was m/ch smoother 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; when /sing the real R combain whether 8 not shown; whether 8

R

OTAG

@Ú Đàà08

usionsha∕ Gñeadoennat

The 0ac6gro/nd term can provide the starting point for assimilation. The 0ac6gro/nd variance and weight of the 0ac6gro/nd term determined how m/ch the 0ac6gro/nd contri0/ted to the analysis% and to the cost f/nction. 'f the 0ac6gro/nd weight was @ero% the analysis converged m/ch closer to the o0servations. ?owever% the analysis was also noisy% which was not d/e to the o0servation noise 8as demonstrated when the o0servations were perfect;. Using limited4domain o0servations and ignoring the 0ac6gro/nd term ca/sed the model to explode 8Trial \$.% not shown;% which implied there was ins/fficient information from which to prod/ce a via0le analysis.

A non4@ero 0ac6gro/nd weight s/0stantially increased the cost f/nction val/e 8, ; from 87--; to 8!---; ? owever% the cost f/nction also depended /pon the n/m0er of o0servations% which made it harder to compare the si@e of , in r/ns with a different n/m0er of o0servations. Res/lts from a st/dy 0y S/n and (roo6 &\$FFD;% showed that for assimilation of single #oppler radar winds% incl/ding a 0ac6gro/nd term improved the analysis.



<ig/re C > 1 + val/e was offset.



<ig/re !. Trial F; &o + o0servations and \* o0servations were limited to 0etween 7- and \$7-. The correlation length was 7-.

Several trials were performed varying the availa0ility of o0servations. With only + o0servations% the sol/tion did not converge as well. \* o0servations alone gave a 0etter sol/tion% 0/t o0servations of 0oth \* and + gave the 0est sol/tion. "imiting the spatial extent of o0servations within the domain to close to the radar also res/lted in poorer convergence. &at/rally% more o0servations will res/lt in a sol/tion closer to the tr/th.

Red/cing the tolerance of the inner and o/ter loops allowed the model to converge to a sol/tion faster. The n/m0er of conmin iterations was /s/ally 8half to two thirds of loops; ins/fficient to allow convergence within the o/ter loops /sing the o/ter tolerance of !e43. (onvergence was improved with more perfect o0servations or a higher o/ter tolerance 8aro/nd !e4>% Trial \$D;. <or sol/tion convergence within the specified n/m0er of o/ter loops% a more relaxed solver tolerance was re1/ired. A solver tolerance of \$e4> was fo/nd s/ita0le for noisy o0servations of limited range 8see

Trials \$:4\$F;. <or mo

This res/Ited in the analysis exactly matching the tr/th//nless the 0ac6gro/nd weight was -. With the 0ac6gro/nd weight e1/al to - the analysis was noisy. This res/Ited in cost f/nction val/es 87--; and gradient val/es 8-.--!;. These cases reached convergence withinh

 $<\!\!ig/re$  3. Tr/th and o0servations fo

# Biblio#ra (y

 9allard%
 S.% #ixon%
 M.%
 SwarOric6%
 S.% "i%
 L.
 M
 Stiller%+.
 8!--:;%
 Assimilation of radar data for

 convective scale &W\* at the Met +ffice.
 #
 (
 ""' 2#!
 .
 3.

"awless A. S. & & ichols &. N. M 9 allard S. \*. 8!-->; A comparison of two methods for developing the linearisation of a shallow4water model 4\*, \* 5 % \$!F \$!>D4\$!73.

"awless A. S. Eratton S. M & ichols &. N. 8!--7; An investigation of incremental 3#4Var /sing non4tangent linear models 4\* , \* 5 % 37F43D:.

&ichols &. N. ( 6 ( 7 % #epartment of Mathem Share and a full state of Mathem Share and a full state of Mathem Share and a full state of the state o

# A endix 1

Ta0les indicating parameters of experiments.

### Ta0le \$. \*arameter variation experiments.

|                                                                                                         |       |                |          |          |           | MIcorr7- |
|---------------------------------------------------------------------------------------------------------|-------|----------------|----------|----------|-----------|----------|
| #escription                                                                                             | Model | +0s everywhere | &o 0 o0s | &0 * 00s | MIcorrA7- | Itol     |
|                                                                                                         | \$8M; | !              | >        | 3        | 7         | :        |
| &/m0er of assim timesteps                                                                               | 7-    | 7-             | 7-       | 7-       | 7-        | 7-       |
| &/m0er of forecast timesteps                                                                            | -     | -              | -        | -        | -         | -        |
| Solver max iterations                                                                                   | !     | !              | !        | !        | !         | !        |
| Solver tolerance                                                                                        | \$E4  | \$E4           | \$E4     | \$E4     | \$E4      | \$E4     |
| <irst *="" o0="" td="" timestep<=""><td>-</td><td>-</td><td>-</td><td>4</td><td>-</td><td>-</td></irst> | -     | -              | -        | 4        | -         | -        |
| "ast * o0 timestep                                                                                      | End   | End            | End      | 4        | End       | End      |
| <irst 0="" o0="" td="" timestep<=""><td>-</td><td>-</td><td>4</td><td>-</td><td>-</td><td>-</td></irst> | -     | -              | 4        | -        | -         | -        |
| "ast O o0 timestep                                                                                      | End   | End            | 4        | End      | End       | End      |
| Time fre1/ency of * o0s                                                                                 | \$    | \$             | \$       | 4        | \$        | \$       |
| Time fre1/ency of 0 o0s                                                                                 | \$    | \$             | 4        | \$       | \$        | \$       |
| <irst *="" 00="" point<="" td=""><td>7-</td><td>-</td><td>-</td><td>4</td><td>7-</td><td>7-</td></irst> | 7-    | -              | -        | 4        | 7-        | 7-       |
| "ast * o0 point                                                                                         | \$7-  | End            | End      | 4        | \$7-      | \$7-     |
| <irst 0="" o0="" point<="" td=""><td>7-</td><td>-</td><td>4</td><td>-</td><td>7-</td><td>7-</td></irst> | 7-    | -              | 4        | -        | 7-        | 7-       |
| "ast 0 o0 point                                                                                         | \$7-  | End            | 4        | End      | \$7-      | \$7-     |
| Space fre1/ency of * o0s                                                                                | \$    | \$             | \$       | 4        | \$        | \$       |
| Space fre1/ency of 0 o0s                                                                                | \$    | \$             | 4        | \$       | \$        | \$       |
| Variance of * o0s                                                                                       | !     | !              | !        | 4        | !         | !        |
| Variance of 0 o0s                                                                                       | !     | !              | 4        | !        | !         | !        |
| Variance of * 0ac6gro/nd                                                                                | \$    | \$             | \$       | \$       | \$        | \$       |
| Variance of O 0ac6gro/nd                                                                                | !     | !              | !        | !        | !         | !        |
| (orr length                                                                                             | ! -   | ! -            | ! -      | ! -      | 7-        | 7-       |
| 9ac6gro/nd weight                                                                                       | \$    | \$             | \$       | \$       | \$        | \$       |
| Max n/m0er o/ter loops                                                                                  | 7-    | 7-             | 7-       | 7-       | 7-        | 7-       |
| Minim max iters                                                                                         | 0 0 t | :              |          |          |           |          |

| MI corr7 - I tol | MIcorr7-Itol:Ir | 0.0           | (orrA\$-      | (orrA!-       | (orrA7-       | (orrA7-%*<br>allover |
|------------------|-----------------|---------------|---------------|---------------|---------------|----------------------|
| D                |                 | F             | \$-           | \$\$          | \$!           | \$>                  |
| 7-               | 7-              | 7-            | 7-            | 7-            | 7-            | 7-                   |
| -                | -               | -             | -             | -             | -             | -                    |
| !                | !               | !             | !             | !             | !             | !                    |
| \$E4             | \$E4D           | \$E4          | \$E4          | \$E4          | \$E4          | \$E4                 |
| -                | -               | -             | -             | -             | -             | -                    |
| End              | End             | End           | End           | End           | End           | End                  |
| -                | -               | 4             | 4             | 4             | 4             | 4                    |
| End              | End             | 4             | 4             | 4             | 4             | 4                    |
| \$               | \$              | \$            | \$            | \$            | \$            | \$                   |
| \$               | \$              | 4             | 4             | 4             | 4             | 4                    |
| 7-               | 7-              | 7-            | 7-            | 7-            | 7-            | \$                   |
| \$7-             | \$7-            | \$7-          | \$7-          | \$7-          | \$7-          | End                  |
| 7-               | 7-              | 4             | 4             | 4             | 4             | 4                    |
| \$7-             | \$7-            | 4             | 4             | 4             | 4             | 4                    |
| \$               | \$              | \$            | \$            | \$            | \$            | \$                   |
| \$               | \$              | 4             | 4             | 4             | 4             | 4                    |
| !                | !               | !             | !             | !             | !             | !                    |
| !                | !               | !             | !             | !             | !             | !                    |
| \$               | \$              | \$            | \$            | \$            | \$            | \$                   |
| !                | !               | !             | !             | !             | !             | !                    |
| 7-               | 7-              | 7-            | \$-           | ! -           | 7-            | 7-                   |
| \$               | \$              | \$            | \$            | \$            | \$            | \$                   |
| 7-               | 7-              | 7-            | 7 -           | 7-            | 7-            | 7-                   |
| !                | !               | !             | >             | >             | >             | >                    |
| "aplace          | "aplace         | "aplace       | "aplace       | "aplace       | "aplace       | "aplace              |
| Real             | Real            | Real          | Real          | Real          | Real          | Real                 |
| Relative grad    | Relative grad   | Relative grad | Relative grad | Relative grad | Relative grad | Relative grad        |
| \$E4\$           | 7E4\$           | 7E4\$         | 7E4\$         | 7E4\$         | 7E4\$         | 7E4\$                |
| \$E43            | \$E4>           | \$E4>         | \$E4>         | \$E4>         | \$E4>         | \$E4>                |
|                  |                 |               |               | \$.7          | \$.7          |                      |

Ta0le \$ contin/ed.

(onv slower "i6e :

Test for 0 offset pro0lem

| _             |               |               | "ong r/n for  | Tolerance for | _             | &o 06gd% o0s            |
|---------------|---------------|---------------|---------------|---------------|---------------|-------------------------|
| >I>conmin (   | OKOarA!       | n. forecast   | convergence   | (onvergence   | &o 96gd       | everywhere              |
| \$3           | 44            | \$7           | \$:           | \$D           | \$.           | \$F                     |
| 7-            | 7-            | 7-            | \$            | \$            | \$            | \$                      |
| -             | -             | \$-           | -             | -             | -             | -                       |
| !             | !             | !             | !             | !             | !             | !                       |
| \$E4          | \$E4          | \$E4          | 7E43          | \$E4>         | \$E4>         | \$E4>                   |
| End                     |
| 4             | 4             | 4             | -             | -             | -             | -                       |
| 4             | 4             | 4             | End           | End           | End           | End                     |
| \$            | \$            | \$            | \$            | \$            | \$            | \$                      |
| 4             | 4             | 4             | \$            | \$            | \$            | \$                      |
| \$            | \$            | \$            | 7-            | 7-            | 7-            | \$                      |
| End           | End           | l End         | \$7-          | \$7-          | \$7-          | End                     |
| 4             | 4             | 4             | 7-            | 7-            | 7-            | \$                      |
| 4             | 4             | 4             | \$7-          | \$7-          | \$7-          | End                     |
| \$            | \$            | \$            | \$            | \$            | \$            | \$                      |
| 4             | 4             | 4             | \$            | \$            | \$            | \$                      |
| !             | !             | !             | !             | \$            | \$            | \$                      |
| !             | !             | 4             | !             | !             | !             | !                       |
| \$            | \$            | \$            | \$            | \$            | \$            | \$                      |
| !             | !             | !             | !             | !             | !             | !                       |
| ! -           | ! -           | 7-            | 7-            | 7-            | 7-            | 7-                      |
| \$            | \$            | \$            | \$            | \$            | -             | -                       |
| 7-            | 7-            | 7-            | \$7-          | 7-            | 7-            | 7-                      |
| >             | >             | >             | 3             | !             | !             | !                       |
| "aplace       | "aplace       | e "aplace     | "aplace       | "aplace       | "aplace       | "aplace                 |
| Real                    |
| Relative grad           |
| 7E4\$         | 7E4\$         | 5 7E4\$       | 7E4\$         | >E4\$         | >E4\$         | >E4\$                   |
| \$E4>         | \$E4>         | • \$E4>       | \$E4>         | !E4>          | !E4>          | !E4>                    |
|               | !             |               |               |               |               | ( onv in \$F loops      |
|               |               |               |               | (onverged in  |               |                         |
|               | &o effect     | &o effect     |               | 3F loops      | (rashed       | M/ch higher<br>More o0s |

#### Ta0le \$ contin/ed.

### Ta0le !. Single o0servation test.

|                                                                              | \$            |               |                         |
|------------------------------------------------------------------------------|---------------|---------------|-------------------------|
| &/m0er of assim timesteps                                                    | 7-            | 7-            | 7-                      |
| Solver max iterations                                                        | !             | !             | !                       |
| Solver tolerance                                                             | \$E4          | \$E4          | \$E4                    |
| <irst *="" o0="" td="" timestep<=""><td>\$</td><td>\$</td><td>\$</td></irst> | \$            | \$            | \$                      |
| "ast * o0 timestep                                                           | End           | End           | End                     |
| <irst 0="" o0="" td="" timestep<=""><td>4</td><td>4</td><td>4</td></irst>    | 4             | 4             | 4                       |
| "ast O o0 timestep                                                           | 4             | 4             | 4                       |
| Time fre1/ency of * o0s                                                      | \$            | \$            | \$                      |
| Time fre1/ency of 0 o0s                                                      | 4             | 4             | 4                       |
| <irst *="" 00="" point<="" td=""><td>:-</td><td>:-</td><td>:-</td></irst>    | :-            | :-            | :-                      |
| "ast * o0 point                                                              | :-            | :-            | :-                      |
| <irst 0="" o0="" point<="" td=""><td>4</td><td>4</td><td>4</td></irst>       | 4             | 4             | 4                       |
| "ast 0 o0 point                                                              | 4             | 4             | 4                       |
| Space fre1/ency of * o0s                                                     | \$            | \$            | \$                      |
| Space fre1/ency of 0 o0s                                                     | 4             | 4             | 4                       |
| Variance of * o0s                                                            | !             | !             | !                       |
| Variance of O oOs                                                            | !             | !             | !                       |
| Variance of * 0ac6gro/nd                                                     | \$            | \$            | \$                      |
| Variance of O 0ac6gro/nd                                                     | !             | !             | !                       |
| (orr length                                                                  | 7-            | ! -           | 7-                      |
| 9ac6gro/nd weight                                                            | \$            | \$            | -                       |
| Max n/m0er o/ter loops                                                       | 7-            | 7-            | 7-                      |
| Minim max iters                                                              | 7             | 7             | 7                       |
| (ov 9 matrix                                                                 | "aplace       | "aplace       | 4                       |
| (ov R matrix                                                                 | Real          | Real          | Real                    |
| Stop criteria                                                                | Relative grad | Relative grad | Relative grad           |
| 'nner tolerance                                                              | 7E4\$         | 7E4\$         | 7E4\$                   |
| +/ter tolerance                                                              | \$E4>         | \$E4>         | \$E4>                   |
| ( omments                                                                    | Shift         |               | ? as a localised change |

Talle >. \*erfect observation tests 8+0 servations A tr/th;.

Solver tol &o variance "op









Trial !.

Trial >.

Trial 3.





Trial :.



Trial ..



Trial F.







Trial \$\$.







Trial \$>.











Trial \$:.



Trial \$D.



Trial \$F.