


Abstract

The  assimilation of  radial wind  from Doppler  radar into  numerical forecast  models  can 

improve weather predictions. Radial wind contains only the velocity component of wind moving 

along a radial line from the radar. Experiments were performed with a simple model based on the 

shallow  water  equation  with  no  rotation.  'Radial'  velocity  and  geopotential  observations  were 

assimilated using a 4D-Var assimilation scheme. An observation operator was introduced for the 

observations, to accommodate radial wind observations. A variety of experiments were performed in 

order to examine the effect of different parameters in  finding a  solution close to the truth. The 

quantity and error of the observations affected the accuracy of the analysis.
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1   Introduction

Data assimilation is a means of incorporating observations into a forecasting model, to adjust the 

simulation  closer  to  reality,  and  create  better  initial  conditions  for  subsequent  forecasts. 

Meteorological forecasting is making more and more use of observation 
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k  where � is the iteration number. These iterations constitute the outer loop of the 

solution Each outer loop involves improving the guess for  x0, which is used to run the nonlinear 

model to calculate x�(�) at each timestep ��, used in the incremental cost funtion (6).

Within each outer loop, the cost function is minimised, using an iterative procedure referred to 

as the inner loop. The minimisation is accomplished by finding the minimum of the gradient of the 

cost function.  The gradient indicates the direction for each iteration of the inner loop to improve the 

estimate. The gradient of the cost function is determined using an adjoint model. The adjoint model 

consists of the derivatives of the cost function with respect to the variables. In this model, a Beale 

restarted  memoryless  quasi-Newtonian  conjugate  gradient  method  is  used  for  the  minimisation, 

implemented by the CONMIN routine1. 

For a solitary Doppler radar, the only radial velocity can be measured directly, i.e. the component of 

movement directed towards or away from the radar. For example, in the case of a monotonic wind, 

the velocity will be negative on one side of the radar, positive on the other, and zero at a tangent. For 

the 1D case here, an observation operator was created as a diagonal matrix, where the velocity was 

multiplied by -1 on one side of the radar, and multiplied by 1 on the other side, so the diagonal 

elements �� of H were:

� �={−1
1

!!�
!!�} (7)

where the location !� of the radar on the grid was specified, and ! represents the grid locations. For 

simplicity, !� was assumed to fall between grid points, as the radar does not make observations at it's 

own location so this value would be zero. Off-diagonal elements of H would also be zero. In a full 3D 

wind field, the observation operator would map the velocity vector at any point to the position vector 

of the velocity with respect to the radar. The spatial extent and spatial resolution of observations could 

be specified independently of  the observation  operator,  for  simulating limited range of  Doppler 

velocities. Another consideration is that the spatial frequency of the observations may not match that 

of the model grid.

In this report, section 2 describes the model setup, lists the model parameters and associated 

values, as were used in various experiments. Section 3 describes the effect of various parameters and 

describes the results of several specific experiments.

1 In the ACM TOMS package available from the GAMS software library at gams.nist.gov
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2   Model Parameters

The model has a one-dimensional domain of grid length 200 and grid spacing 0.01. The timestep was 

9.2e-3. A run of the model providing *
and +
everywhere provided 'truth' for comparison with the 

analysis, and was used to generate observations and the background. The background was the truth 

with a phase shift.  Obsevations were sampled from the truth and then random noise was added 

according to the variance specified, unless perfect observations were being used (see section 3.3).

A range of experiments were conducted with the model, changing various model parameters 

and observation choices. These parameters (with range of values in brackets) include:

● Presence of *
and/or +
observations to be assimilated.

● Range of observations of *
and/or +
2everywhere, limited to 50 <x<150)

● Spatial frequency of observations(every gridpoint in x or every 10)

● Correlation length (used for B) (10 to 50)

● Variance of observation errors (used for R diagonal elements) (0.001-0.02)

● Number of assimilation time steps (normally 50, tried 100)

● Forecasting time steps (normally 0, tried 100)

● Background weight (additional term to weight the background term in the cost function (4)) 

(0.001 - 1)

Various parameters were also varied to test the effect on convergence.

● Outer loops, ideally more than required for convergence (normally 50, tried up to 150)

● Solver tolerance for convergence of the final solution (1e-8 – 1e-3)

● Number of conmin iterations (the inner loop) (200 usually, tried 300 and 400)

● Inner tolerance for convergence of cost function and its gradient in conmin (�20.1 -0.5))

● Outer tolerance for convergence within outer loop.(�(0.0005-0.001))

● Solver max iterations for minimising the cost function (normally 200, used 50 for perfect 

observations)

Other options.

● Background type – how the background was calculated from the (truth + phase error)

● Covariance B matrix type (I or Laplace (see 5))

● Covariance R matrix type (I or real, i.e. using real variances of observations)

The parameters used in the various trials and experiments are tabulated in Appendix 1. For the main 
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set of experiments, most trials are displayed graphically in Appendix 2. Each graph has four panels, 

showing the background, truth, and analysis for velocity (*) and for geopotential (+), the cost function 

value, and the cost function relative gradient.

3   Results

3.1 Effect of some parameters, based on experiments

This  section  discusses  briefly the  effect  of  various parameters  which  were  noted in  Section 2. 

Initiailly, various experiments were run with different choices of parameters, in order to select one 

suitable to act as a control experiment. The control is described as Trial 1 in the Appendices, and used 

'typical' values for quantitative parameters, and observations coinciding with all grid point locations. 

For the subsequent trials, as listed in the Appendices, one or two parameters were varied. All were 

performed with the radar observation operator in place, as whether the velicity observations were 

'radial' or not would not effect the analysis. The effect of various parameters is now described.

Increasing the number of assimilation time steps visibly improved the analysis, i.e. it more 

closely resembled the truth. Changing the number of time steps from 50 to 100 (as in trials 16-19 as 

shown in Appendix 2) lowered the final cost function value and its gradient by an order of magnitude, 

because the number of observation was doubled, thus a far more precise analysis could be obtained.

The  analysis was  much  smoother  (not  shown)  when  using  the  real  R  matrix bas
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The background term can provide the starting point for assimilation. The background variance 

and weight of the background term determined how much the background contributed to the analysis, 

and to the cost function. If the background weight was zero, the analysis converged much closer to the 

observations. However, the analysis was also noisy, which was not due to the observation noise (as 

demonstrated when the observations were perfect). Using limited-domain observations and ignoring 

the background term caused the model to explode (Trial 18, not shown), which implied there was 

insufficient information from which to produce a viable analysis.

A non-zero background weight substantially increased the cost function value (,) from �(500) 

to �(20000). However, the cost function also depended upon the number of observations, which made 

it harder to compare the size of
 , in runs with a different number of observations. Results from a 

study by Sun and Crook (1997), showed that for assimilation of single Doppler radar winds, including 

a background term improved the analysis.

Figure 1: (Trial 3) No +
observations and correlation length was 20. The +
value was offset.
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Figure 2. (Trial 9) No +
observations and * observations were limited to between 50 and 150. The 

correlation length was 50.

Several  trials  were  performed  varying  the  availability  of  observations.  With
 only  +


observations, the solution did not converge as well. * observations alone gave a better solution, but 

observations of both * and +
gave the best solution. Limiting the spatial extent of observations within 

the domain to close to the radar also resulted in poorer convergence. Naturally, more observations 

will result in a solution closer to the truth.

Reducing the tolerance of  the inner and outer loops allowed the model to converge to a 

solution faster. The number of conmin iterations was usually (half to two thirds of loops) insufficient 

to allow convergence within the outer loop,  using the outer tolerance of 2e-4. Convergence was 

improved with more perfect observations or a higher outer tolerance (around 2e-3, Trial 17). For 

solution convergence within the specified number of outer loops, a more relaxed solver tolerance was 

required. A solver tolerance of 1e-3 was found suitable for noisy observations of limited range (see 
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This resulted in the analysis exactly matching the truth, unless the background weight was 0. With the 

background weight equal to 0 the analysis was noisy. This resulted in cost function values �(
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Appendix 1

Tables indicating parameters of experiments.

Table 1. Parameter variation experiments.

Description Model Obs everywhere No φ obs No * obs M+corr=50
M+corr50

+tol
1 (M) 2 3 4 5 6

Number of assim timesteps 50 50 50 50 50 50
Number of forecast timesteps 0 0 0 0 0 0
Solver max iterations 200 200 200 200 200 200
Solver  tolerance 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
First * ob timestep 0 0 0 - 0 0
Last * ob timestep End End End - End End
First φ ob timestep 0 0 - 0 0 0
Last φ ob timestep End End - End End End
Time frequency of * obs 1 1 1 - 1 1
Time frequency of φ obs 1 1 - 1 1 1
First * ob point 50 0 0 - 50 50
Last * ob point 150 End End - 150 150
First φ ob point 50 0 - 0 50 50
Last φ ob point 150 End - End 150 150
Space frequency of * obs 1 1 1 - 1 1
Space frequency of φ obs 1 1 - 1 1 1
Variance of * obs 0.02 0.02 0.02 - 0.02 0.02
Variance of φ obs 0.02 0.02 - 0.02 0.02 0.02
Variance of * background 1 1 1 1 1 1
Variance of φ background 2 2 2 2 2 2
Corr length 20 20 20 20 50 50
Background weight 1 1 1 1 1 1
Max number outer loops 50 50 50 50 50 50



Table 1 continued.

M+corr50+tol M+corr50+tol 6+no φ Corr=10 Corr=20 Corr=50
Corr=50, *

allover

7 8 9 10 11 12 13
50 50 50 50 50 50 50
0 0 0 0 0 0 0

200 200 200 200 200 200 200
1.00E-008 1.00E-007 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008

0 0 0 0 0 0 0
End End End End End End End

0 0 - - - - -
End End - - - - -

1 1 1 1 1 1 1
1 1 - - - - -

50 50 50 50 50 50 1
150 150 150 150 150 150 End
50 50 - - - - -

150 150 - - - - -
1 1 1 1 1 1 1
1 1 - - - - -

0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.02 0.02 0.02 0.02 0.02 0.02 0.02

1 1 1 1 1 1 1
2 2 2 2 2 2 2

50 50 50 10 20 50 50
1 1 1 1 1 1 1

50 50 50 50 50 50 50
200 200 200 300 300 300 300

Laplace Laplace Laplace Laplace Laplace Laplace Laplace
Real Real Real Real Real Real Real

Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad
1.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001
1.00E-004 1.00E-003 1.00E-003 1.00E-003 1.00E-003 1.00E-003 1.00E-003

1.5 1.5

Conv slower Like 6
Test for φ 
offset problem
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Table 1 continued.

3+300conmin φ_bar=2 n. forecast
Long run for 
convergence

Tolerance for 
Convergence No Bkgd

No bkgd, obs 
everywhere

14 -- 15 16 17 18 19
50 50 50 100 100 100 100
0 0 10 0 0 0 0

200 200 200 200 200 200 200
1.00E-008 1.00E-008 1.00E-008 5.00E-004 1.00E-003 1.00E-003 1.00E-003

0 0 0 0 0 0 0
End End End End End End End

- - - 0 0 0 0
- - - End End End End
1 1 1 1 1 1 1
- - - 1 1 1 1
1 1 1 50 50 50 1

End End End 150 150 150 End
- - - 50 50 50 1
- - - 150 150 150 End
1 1 1 1 1 1 1
- - - 1 1 1 1

0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.02 0.02 - 0.02 0.02 0.02 0.02

1 1 1 1 1 1 1
2 2 2 2 2 2 2

20 20 50 50 50 50 50
1 1 1 0.001 0.001 0 0

50 50 50 150 50 50 50
300 300 300 400 200 200 200

Laplace Laplace Laplace Laplace Laplace Laplace Laplace
Real Real Real Real Real Real Real

Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad
5.00E-001 5.00E-001 5.00E-001 5.00E-001 3.00E-001 3.00E-001 3.00E-001
1.00E-003 1.00E-003 1.00E-003 1.00E-003 2.00E-003 2.00E-003 2.00E-003

2 Conv in 19 loops

No effect No effect
Converged in 
49 loops Crashed Much higher J

More obs
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Table 2. Single observation test.

1
Number of assim timesteps 50 50 50
Solver max iterations 200 200 200
Solver  tolerance 1.00E-008 1.00E-008 1.00E-008
First * ob timestep 1 1 1
Last * ob timestep End End End
First φ ob timestep - - -
Last φ ob timestep - - -
Time frequency of * obs 1 1 1
Time frequency of φ obs - - -
First * ob point 60 60 60
Last * ob point 60 60 60
First φ ob point - - -
Last φ ob point - - -
Space frequency of * obs 1 1 1
Space frequency of φ obs - - -
Variance of * obs 0.02 0.02 0.02
Variance of φ obs 0.02 0.02 0.02
Variance of * background 1 1 1
Variance of φ background 2 2 2
Corr length 50 20 50
Background weight 1 1 0
Max number outer loops 50 50 50
Minim max iters 500 500 500
Cov B matrix Laplace Laplace -
Cov R matrix Real Real Real
Stop criteria Relative grad Relative grad Relative grad
Inner tolerance 5.00E-001 5.00E-001 5.00E-001
Outer tolerance 1.00E-003 1.00E-003 1.00E-003
Comments Shift Has a localised change
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Appendix 2. Figures showing output from trials in Table 1.

Trial 1.

Trial 2.
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Trial 5.

Trial 6.
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Trial 7.

Trial 8.
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Trial 9.

Trial 10.

23



Trial 11.

Trial 12.
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Trial 13.

Trial 14.
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Trial 15.

Trial 16.
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Trial 17.

Trial 19.
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