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Abstract

A cell by cell adaptive mesh technique is described and implemented to solve the Euler

equations. The adaptive mesh scheme builds upon a staggered grid Lagrangian code

similar to the AWE code CORVUS. The mesh is automatically refined in a cell by cell

manner using a solution gradient refinement criteria. The method has the automatic

response of adaptive mesh refinement but without storing and solving each level sep-

arately. Disjoint nodes are used in the transition from fine to coarse elements. Time

refinement is not included at present. The adaptive mesh technique produces results

comparable to the uniformly fine mesh in a fraction of the computational time.



Acknowledgements

I would like to acknowledge the help of my supervisors Dr. Sweby of Reading University

and Dr. Barlow of AWE. I would also like to acknowledge Dr. Powell of AWE for his

help with the adaptive mesh technique and Professor Baines of Reading University for

his advice. This research was funded by AWE.



Contents

1 Introduction 1

2 The Lagrangian Scheme 4

2.1 The Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5



4.5 Buffer cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Solution transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Adaptive mesh refinement with Christensen’s artificial viscosity . . . . . 41

4.8 Adaptive mesh results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8.1 One dimensional test problems . . . . . . . . . . . . . . . . . . . 43

4.8.2 Two dimensional Riemann problem . . . . . . . . . . . . . . . . . 44

5 Conclusions and Further Work 51

ii



List of Figures

2.1 Diagram showing the positions of the nodal and element centred variables. 6

2.2 Diagram showing the ∆u used in Christensen’s artificial viscosity. . . . . 12

2.3 Diagram edge viscosities and node numbering. Each node has position

(z,r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Diagram showing the variables for the calculation of the bottom edge

velocity gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Diagram of limiting procedure for bottom edge. . . . . . . . . . . . . . . 14

2.6 Diagram of Sod’s shock tube. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Diagram of two dimensional Riemann problem. . . . . . . . . . . . . . . 19

2.8 Sod’s shock tube problem at t=0.2 with bulk artificial viscosity coeffi-

cients cl = 0.1 and cq = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Sod’s shock tube problem at t=0.2 with Christensen artificial viscosity

coefficients cl = 0.5 and cq = 0.75 . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Radial Sod problem at t=0.25 with bulk artificial viscosity coefficients

cl = 0.1 and cq = 2.0, 200 mesh. . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Radial Sod problem at t=0.25 with Christensen artificial viscosity coeffi-

cients cl = 0.5 and cq = 0.75, 200 mesh. . . . . . . . . . . . . . . . . . . . 21

2.12 Two dimensional Riemann problem 4 shocks, at t=0.2 with bulk artificial

viscosity coefficients cl = 0.08 and cq = 1.0 . . . . . . . . . . . . . . . . . 22

2.13 Two dimensional Riemann problem mesh 4 shocks, at t=0.2 with Chris-

tensen artificial viscosity coefficients cl = 0.3 and cq = 0.65 . . . . . . . . . 23

2.14 Two dimensional Riemann problem density contours 4 shocks, at t=0.2

with Christensen artificial viscosity coefficients cl = 0.3 and cq = 0.65 . . . 24

3.1 Diagram of a course-to-fine interface. Empty circles indicate disjoint nodes. 26

iii



3.2 Diagram showing the distance ratio. Filled circles represent non-disjoint

nodes and the empty circle represents the disjoint node. . . . . . . . . . . 26

3.3 Coarse-to-fine 2 region test problem, mesh density ratio 1:2, t=0.13 with

cl = 0.1 and cq = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Fine-to-coarse 2 region test problem, mesh density ratio 2:1, t=0.13 with

cl = 0.1 and cq = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Coarse-to-fine 2 region test problem, mesh density ratio 1:3, t=0.13 with

cl = 0.1 and cq = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Fine-to-coarse 2 region test problem, mesh density ratio 3:1, t=0.13 with

cl = 0.1 and cq = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Diagram of the dynamic mesh with fine elements inserted. . . . . . . . . 33

4.2 Element numbering changes when an element is inserted, the existing

element numbers are all shifted to fit the new elements in. . . . . . . . . 36

4.3 Node numbering for new nodes, the original coarse node numbers never

change. Only fine node numbers are ever shifted to fit new nodes in. . . . 37

4.4 Diagram to illustrate the calculation of new fine nodal variables. . . . . . 39

4.5 Diagram of a course-to-fine interface to show entries of disjoint element-

element array. The empty circle indicates the disjoint node. . . . . . . . . 41

4.6 Diagram of a course-to-fine interface showing the correct aligning element

for limiting along the bottom edge. . . . . . . . . . . . . . . . . . . . . . 42

4.7 Diagram of a fine-to-coarse interface. Limiting along top edge of the fine

element requires the continuation of this edge through the neighbouring

coarse element to point p. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Two level adaptive mesh for piston problem with bulk artificial viscosity

coefficients cl = 0.1 and cq = 1.0 at t=0.3. . . . . . . . . . . . . . . . . . 46

4.9 Two level adaptive mesh density contours for piston problem with bulk

artificial viscosity coefficients cl = 0.1 and cq = 1.0 at t=0.3. . . . . . . . 46

4.10 Two level adaptive mesh for Sod problem with bulk artificial viscosity

coefficients cl = 0.1 and cq = 1.0 at t=0.2. . . . . . . . . . . . . . . . . . 47

4.11 Variation of number of elements over time for Sod problem with bulk

artificial viscosity coefficients cl = 0.1 and cq = 1.0. . . . . . . . . . . . . 47

iv



4.12 Two level adaptive mesh results for Sod problem with bulk artificial vis-

cosity coefficients cl = 0.1 and cq = 1.0 at t=0.2. . . . . . . . . . . . . . . 48

4.13 Two level adaptive mesh results for Sod problem with Christensen artifi-

cial viscosity coefficients cl = 0.5 and cq = 0.75 at t=0.2. . . . . . . . . . 49

4.14 Two level adaptive mesh for 2D Riemann problem with Christensen ar-

tificial viscosity at t=0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.15 Variation of number of elements over time for 2D Riemann problem with

Christensen artificial viscosity at t=0.2. . . . . . . . . . . . . . . . . . . . 50



Chapter 1

Introduction

Hyperbolic differential equations, such as the Euler equations, exhibit shocks and shock

formation. Computational fluid dynamics has been used for decades to model the prop-

agation and formation of shocks. There is much interest in increasing the resolution of

such features of interest. Lagrangian schemes are often used to allow the mesh to follow

the movement of the material and therefore cluster elements in the areas of interest.

However this technique is limited by the initial number of elements as no new elements

can be created. As the mesh becomes more dense around the feature of interest sur-

rounding areas of the mesh can become underresolved. Furthermore, the Lagrangian

mesh may become tangled because of solution vorticity.

To reduce mesh tangling Lagrangian schemes are often combined with a remap step

where the grid is relaxed and the state variables are remapped or advected. The grid

may be completely mapped back to a fixed Eulerian grid [13]. A gr



the mesh remains fixed throughout time and the material moves relative to the mesh. A

hierarchical set of grids representing different refinement levels are automatically created

as further resolution is required [6], [10], [19]. This technique has also been applied to

elliptic equations often in the form of the very successful multigrid method, which uses

quadtree data structures. However in time dependent problems the Eulerian formulation

makes it more expensive to track or introduce physics on material interfaces. Clearly a

Lagrangian adaptive mesh technique would provide a solution to these problems.

An ALE adaptive mesh refinement method has been successfully developed by Anderson,

Elliott and Pember [1]. In their AMR approach refinement occurs in rectangular blocks,

which simplifies the data structures needed. However a greater number of fine elements

are required and the rectangular blocks may increase the chances of the mesh imprinting

on the solution. Furthermore solutions must be obtained for all levels even though many

will not be used. Therefore in this work a cell by cell refinement strategy is presented

and the levels are not considered separately, rather the whole grid containing coarse and

fine elements is used.

Instead of creating separate levels, new elements are inserted creating a mesh with both

fine and coarse elements. Adaptive mesh insertion or AMI was developed for element

insertion in CORVUS [2]. The refinement is limited as elements can only be inserted in

one direction, in contrast to the isotropic technique developed in this work. The AMI

developed in CORVUS is triggered when element aspect ratios become large, rather



and discussed. Finally results for a Sod’s shock tube problem, radial Sod problem and

two dimensional Riemann problem are presented by way of validating the Lagrangian

code.

In Chapter 3 we consider the introduction of disjoint nodes, nodes with three neighbours

rather than four, on an interface between different mesh densities. The alteration of the

Lagrangian step to include disjoint nodes is detailed. A piston problem is run with a fine

patch to highlight the oscillations that can be caused by a shock crossing an interface

between two different mesh densities. This motivates the need for an adaptive technique

for refining the mesh.

The adaptive mesh technique is described fully in Chapter 4. The notation, data struc-

tures and refinement criteria are all introduced. The features of interest must remain

totally encapsulated within the fine regions throughout the Lagrangian step. Buffer



Chapter 2

The Lagrangian Scheme



performed using a predictor-corrector scheme. This avoids the iteration that would be

required for an implicit time scheme.

2.1 The Euler equations

The Euler equations in a Lagrangian reference frame are

Dρ

Dt
= −ρ∇ · u (2.1)

ρ
Du

Dt
= −∇p (2.2)

ρ
Dǫ

Dt
= −p∇ · u, (2.3)

where
D

Dt
=

∂

∂t
+ u · ∇ (2.4)

is the Lagrangian derivative, ρ is the density, u is the velocity vector, p is the pressure

and ǫ



conditions. Shock physics can be built into the numerical method by using artificial

viscosity, solving a Riemann problem or flux limiting. Solving the Riemann problem

requires a more accurate sound speed and cell centred variables. It can also be exceed-

ingly expensive. Artificial viscosity is favoured in this code as it is cheaper to apply and

can be used with a staggered grid.

The idea of adding an artificial viscosity term q to the pressure terms in the Euler

equations was suggested by von Neumann [25] in the 1950’s. This spreads the shock

over 3-4 elements, mimicking irreversible shock heating. The form of q will be discussed

in a later section.

2.2 The Lagrangian mesh

A series of logically rectangular regions are defined initially. The regions are divided

into grids of quadrilateral elements. Connectivity arrays for the element-node, element-

element and node-node connections are then created so that an unstructured grid ap-

proach can be used.

The positions and velocities are stored at the nodes of the elements, while density,

pressure, specific internal energy, element mass and element sound speed are discretised

in the centre of the element. This is known as a staggered grid, rather than a cell centred

grid where all variables are defined in the centre of the cell. Staggered grids make the

accurate calculation of the strain rate tensor easier, making material strength simpler

to include. Nodal positions and velocities also make the tracking of interfaces and the

inclusion of mixed cells easier.

Each element’s mass is assumed to be constant since the Lagrangian mesh moves with

the material.

p , ρ , ǫ
V , c

x , u

Figure 2.1: Diagram showing the positions of the nodal and element centred variables.
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2.3 Time discretisation

A predictor-corrector time discretisation is used for the implicit pressure dependence in

the Euler equations. The energy equation and the equation of state are used to obtain

a half step pressure prediction. This predicted pressure is then used in the momentum

equation to derive full step nodal velocities. All state variables are then recalculated

during a full time step correction.

The time step is limited by the CFL condition, ensuring that signals cannot cross a

whole element in one time step. The CFL denominator approximates the element shock

speed and must be adjusted to take the artificial viscosity into account. The Courant

number C is taken as 1
2

or 1
3

in this work.

The procedure for one time step is detailed below.

• Calculate the artificial viscosity.

• Calculate a stable time step using the CFL condition,

∆t < Cl/
√

c2
s + 2q/ρ. (2.7)

• Move the nodes to their half time step positions using

xn+1/2 = xn +
∆t

2
un. (2.8)

• Calculate the half time step element volumes and update the element densities.

• Evaluate the half time step element energies using the time discretisation of (2.3),

ǫn+1/2 = ǫn −
∆t

2 M e
(pn + qn)∇ · un, (2.9)

where M e is the element mass and the spatial derivatives are evaluated using finite

elements.

• Update the half time step element pressures using the equation of state.

• Use the discretisation of the momentum equation to find the second order accurate

velocities at the end of the full time step,

un+1 = un −
∆t

Mnodal
∇(pn+1/2 + qn), (2.10)

where Mnodal is the nodal mass and the spatial derivatives are evaluated using

finite elements.
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• Calculate the final nodal positions using the average velocity ū = 1
2
(un + un+1)

over the full time step

xn+1 = xn + ∆t ū. (2.11)

• Calculate the final volumes and densities.

• Evaluate the energies at the end of the time step using

ǫn+1 = ǫn −
∆t

M e
(pn+1/2 + qn)∇ · ū. (2.12)

• Calculate the full time step pressures from the equation of state.

2.4 Spatial discretisation

The domain must be discretised in order to evaluate the ∇(p+q) term in the momentum

equation and the ∇ · u term in the energy equation. This can be done using finite

volumes, finite elements or finite differences. This work uses bilinear isoparametric

finite elements. Each element is mapped, using an isoparametric mapping, on to the

square with sides ξ = ±1 and η = ±1. The bilinear finite element functions are

N1 =
1

4
(1 − ξ)(1 − η)

N2 =
1

4
(1 + ξ)(1 − η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1 − ξ)(1 + η). (2.13)

2.4.1 The momentum equation

The , 0 T6175.9J.246758(e)0.d
[(N24.018(e)0.0490113(l)0.2182447(a)0.245057(r)-0.141426(a)0.245057(t)-0.147034(i)0.218509)-0.9647034(m)-442.695h e elemen

qu



where d Ω = dxdy = detJdξdη , J is the Jacobian and ri is x or y in Cartesian coordi-

nates.

The left hand side can be diagonalised by ‘mass lumping’
∫

Ω

∑

k

u̇kNkNjd Ω = u̇j

∫ 1

−1

∫ 1

−1

NjdetJdξdη . (2.16)

Applying Green’s theorem in the plane to the right hand side and noting that pe, qe and

ρe are constant within each element we finally achieve

ρeu̇j

∫ 1

−1

∫ 1

−1

NjdetJdξdη = (pe + qe)

∫ 1

−1

∫ 1

−1

∂Nj

∂ri

detJdξdη . (2.17)

The term on the right is the mass contribution from element e to its local node j.

The term on the left is the force in the direction ri acting on node j due to element

e’s pressure. In practice the elements are looped and the force and pressure that the

element exerts on the node is evaluated. The four element values are then gathered

for each node. A nodal acceleration can then be calculated and discretised to give the

updated nodal velocity. The process must be done for each Cartesian direction.

2.4.2 The energy equation

The Euler energy equation (2.3) can be rewritten as

ρeǫ̇ = −(p + q)∇ · u. (2.18)

This can also be expressed in finite element weak form using the linear finite element

representations

u =
∑

k

ukNk; v =
∑

k

vkNk. (2.19)

On integrating (2.18), realising that pe, qe and ρe are constant within each element and

substituting (2.19) into (2.18) we obtain

ρeǫ̇

∫

Ω

d Ω = −(pe + qe)

∫

Ω

∑

k

(

uk
∂Nk

∂x
+ vk

∂Nk

∂y

)

d Ω . (2.20)

The left hand side is just the element mass Me multiplied by ǫ̇. The right hand side can

be simplified by interchanging the integral with the summation, changing the summation

variable, and taking the constant nodal velocities out of the integral. Finally we obtain

ǫ̇ = −
(pe + qe)

Me

4
∑

j=1

[

uj

(
∫ 1

−1

∫ 1

−1

∂Nj

∂x
detJdξdη

)

+ vj

(
∫ 1

−1

∫ 1

−1

∂Nj

∂y
detJdξdη

)]

.

(2.21)
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For each element the nodal summation is performed first using the record of the element’s

nodes. Then the constant element quantities are included and the energy value updated

via the time discretisation.

2.5 Axisymmetric changes

The Cartesian coordinates (x, y) can be mapped to the Axisymmetric coordinates (z, r)

by including a radial dependence in the finite element and volume equations. This

effectively rotates the Cartesian domain 360◦ around the x-axis. Cylindrical problems

can then be run very efficiently with only a two dimensional number of elements.

In the element volume equation dxdy becomes rdrdz and we express the radius in terms

of the finite element functions. The element volume then becomes

Ve =
4

∑

j=1

(rj

∫ 1

−1

∫ 1

−



2.6 Artificial Viscosity

As a first approach a scalar bulk artificial viscosity was used. This is a crude extension

to two dimensions of von Neumann’s originally one dimensional artificial viscosity [25],

where ∆u has been replaced by l∇ · u.

q = cqρ(l∇ · u)2 − clρcsl |∇ · u| ,l
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The velocity slope ratio is set to one on a reflecting boundary.

The limiter φ is defined as

φ = max(0, min(
1

2
(RL +





was successfully reproduced. Constant density states were observed in front of the

contact as required. The velocity profile peaked and then curved down to the shock.

This was well resolved by the program.

The bulk artificial viscosity caused oscillations behind the contact in both this problem

and the one dimensional Sod’s shock tube problem. The Christensen artificial viscosity

retains a smooth profile in this area due to the benefits of the limiting procedure. Both

artificial viscosities spread the shock over the same number of elements.

The energy profile overerestimated the contact jump and then sloped down to the correct

height. This is again due to too much artificial viscosity being given to the elements

around the contact at the start of the calculation until the shock is spread out.

2.7.3 Two dimensional Riemann problem

In this example different constant initial conditions are given in each quarter of a square

domain. The quarters 1,2,3 and 4 are defined respectively as x > 0.5 and y > 0.5, x < 0.5

and y > 0.5, x < 0.5 and y < 0.5 and finally x > 0.5 and y < 0.5. There are nineteen

possible configurations of constant states divided by shocks, contact discontinuities,

rarefaction fans or slip lines.

Figure 2.12 shows results for the following configuration involving 4 shocks,

p2 = 0.3500 ρ2 = 0.5065 p1 = 1.1000 ρ1 = 1.1000

u2 = 0.8939 v2 = 0.0000 u1 = 0.0000 v1 = 0.0000

p3 = 1.1000 ρ3 = 1.1000 p4 = 0.3500 ρ4 = 0.5065

u3 = 0.8939 v3 = 0.8939 u4 = 0.0000 v4 = 0.8939 .



the quarters meet. Since Kurganov and Tadmor did not have to define velocities at

the nodal values they did not experience the problem of how to define the velocities

where the quarters meet. As every quarter has a different velocity there are two or

more possible values for these nodal velocities. Changing these values moves where the

velocity discontinuity actually occurs, this then changes whether the artificial viscosity
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Chapter 3

Multiple regions and disjoint nodes

3.1 Regions with different mesh densities

and disjoint nodes



f

f

Figure 3.1: Diagram of a course-to-fine interface. Empty circles indicate disjoint nodes.
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During the Lagrangian step, each disjoint node is slaved to lie the same ratio along the

line joining the neighbouring non-disjoint nodes on the interface. Using the notation in



bottom plots. These were eliminated if only the bottom regions in the calculation were

considered.

To assess the effect of the fine-to-coarse and coarse-to-fine interfaces separately a series

of two region test problems were run at a higher boundary velocity of 1.0 and a mesh

density ratio of 1:2, see Figure 3.3 and Figure 3.4. No oscillations were seen before the

shock crossed the interface. After crossing the coarse-to-fine interface a spurious dip

and peak appeared. The dip moves to the left, moving against the Lagrangian flow.

The peak remained roughly at the interface, moving to the right with the Lagrangian

flow but with the distance between it and the shock increasing. For the fine-to-coarse

interface a peak is observed where the dip was and a dip is observed where the peak

was in the coarse-to-fine calculation. The spurious reflections had a larger amplitude in

the fine-to-coarse calculation. The shock width was thinner in the fine regions. Further

calculations were run with a mesh density ratio of 1:3, see Figure 3.5 and Figure 3.6.

The oscillations were found to have larger amplitudes than for the mesh density ratio

of 1:2. The largest amplitudes were again observed for the fine-to-coarse interface. The

difference between the coarse and fine shock widths was also more pronounced.

The spurious oscillations are reflections or transmissions (depending on which way they

move) generated by the change in mesh density. The shock data is perturbed slightly at

the interface and the oscillations move according to the characteristics as if they were

real waves. It would be useful to investigate how to reduce or eliminate these oscillations

since a complicated test problem may have many small reflected shocks that can not all

be refined. A comparison of the oscillations shown here with those obtained using ghost

cells, rather than disjoint nodes, may also be beneficial. These remain as possible areas

for further research.
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Chapter 4

Adaptive mesh technique

4.1 Adaptive mesh technique introduction

This chapter details our adaptive mesh technique, which can be seen as a combination

of adaptive mesh insertion and adaptive mesh refinement. The significant features of

the method are:

• cell by cell refinement

• AMI data structure, elements are inserted forming a combined mesh

• only solve on combined mesh

• disjoint nodes are used on interfaces between coarse and fine meshing

• isotropic refinement

• automatic refinement based on solution gradient

• one refinement level at present, technique should generalise to an arbitrary number

of refinement levels

• no time refinement at present.

Adaptive mesh refinement, AMR, and adaptive mesh insertion, AMI, increase the mesh

resolution locally around a feature of interest without coarsening the surrounding mesh.

This is in contrast to penalty based methods such as ALE that draw elements into the

area of interest leaving the surrounding mesh coarser and possibly under resolved. This

31



local approach avoids the refinement of the whole computational domain, which would

prove too expensive.

A cell by cell approach to refinement is used instead of the clustering of elements into

rectangular refinement blocks. Cell by cell refinement is often used in unstructured

grids with triangular elements [16], [24] and sometimes used f





or based on the elements aspect ratio [2] rather than being solution dependent. In this

work we wish to sense when a solution feature is under resolved and add the required

elements automatically. This also allows a feature to be tracked by a finer region as it

moves, which would be impossible to do manually.

Although the present method contains only one level of refinement, i.e) the coarse mesh

and one fine level, the ultimate aim will be to have an arbitrary



4.3 Adaptive mesh data structures

The coarse number of nodes, nnodcoarse, and coarse number of elements, nelcoarse,

are retained for all time. The number of regions in the problem remains the same. The

following arrays representing the original coarse grid, with nodes belonging to M0 and

elements belonging to E0



higher numbers have their general element numbers shifted to fit these in. Therefore

even though an element has not been refined its element number may have changed.

The new element numbers are tracked using a new connectivity array
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Figure 4.3: Node numbering for new nodes, the original coarse node numbers never

change. Only fine node numbers are ever shifted to fit new nodes in.

4.4 Refinement criteria





• shifting the solution vector entries for cell centred variables when elements are

added

• shifting the nodal solution vector for nodal variables when nodes are removed

during derefinement or added during derefinement.

The coarse cell centred variables for elements being derefined are computed first. This is

because during derefinement only coarse cell centred variables need to be calculated. For

nodal variables the fine values are simply removed. The solution φ for the new coarse

element is given by the weighted average of the four fine elements’ solutions. Using X

for the weighting variable the formula that is applied for each element e ∈ Ed is

φ(p) =

∑4
i=1 φ(i)X(i)
∑4

i=1 X(i)
, (4.6)

where the i’s denote the four elements that are being derefined and p is the unshifted

element number. Whether a volume or mass weighted average is used depends on the

state variable. Volume weighting is used for density while energy is mass weighted. The

procedure uses the previous step’s coarsemem, stored as coarsememold.

For nodal variables, only the fine node solution values require shifting when refinement

or derefinement occurs. The shifting utilises the previous and present coarsemem and

node-element connectivity arrays. The resulting nodal varia



four corner nodes n1,2,3,4 ∈ M0

φ(nc) =
1

4
(φ(n1) + φ(n2) + φ(n3) + φ(n4)). (4.7n



4.7 Adaptive mesh refinement with Christensen’s

artificial viscosity

In order to use Christensen’s artificial viscosity with the adaptive mesh scheme some

alterations to the Christensen routine are required. To retain the accuracy of the fine

solutions and not spread the shock over the coarse elements we wish to use the finest

possible element stencil for the Christensen’s artificial viscosity.

Firstly the element-element stencil must be global with connections across interfaces and

including both the coarse and fine elements. The element-element connections across

coarse-to-fine or fine-to-coarse interfaces are set to -1. This acts as a pointer to a new

disjoint element-element connectivity array. For each disjoint node this specifies the

coarse element number, the side that is disjoint with respect to the coarse element and

the two fine elements. For the arrangement shown in Figure 4.5 row nd would have

entries ec, 2, ef1, ef2.

If an element is surrounded by four elements of the same type then the Christensen

method is unchanged regardless of whether the elements are coarse or fine. Therefore we

need only consider the situations on coarse-to-fine interfaces and fine-to-coarse ifaces a



fec

ef1

Figure 4.6: Diagram of a course-to-fine interface showing the correct aligning element

for limiting along the bottom edge.

element for the edge must be identified. Referring to Figure 4.6, when limiting the edge

artificial viscosity for element ec’s bottom edge the correct aligning element is ef . When

the routine tries to find the element neighbour along that edge the element-element value

will be -1 informing us that the disjoint element-element array must be used to find the

correct fine element. Once this is done the rest of the Christensen method remains

unchanged.

The situation is more complicated for a fine element on a fine-to-coarse interface. The

edge joining the disjoint node perpendicular to the interface terminates at the disjoint

node. To provide a velocity gradient in the coarse element which the edge would have

divided (if it had continued from the disjoint node) a velocity value is required in the

middle of the opposite side at point p. This situation is illustrated in Figure 4.7 for the

top edge of the fine element. The velocity at p is interpolated from the coarse nodes

either side of it. The mesh legs Lhor and Lver have the same directions for half of the

element as the coarse element had. Since both the area and Lhor would have been halved

no correction is required. Therefore the velocity gradient can be calculated using the

velocity at p
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Figure 4.7: Diagram of a fine-to-coarse interface. Limiting along top edge of the fine

element requires the continuation of this edge through the neighbouring coarse element

to point p.

4.8 Adaptive mesh results

4.8.1 One dimensional test problems

A piston problem with left boundary velocity 1.0, pressure 1.0 and density 1.0 was run

with a base grid of 50× 5. The refinement parameter was 0.1 and the derefinement pa-

rameter was 0.075. This problem verified that both refinement and derefinement worked

well. The fine cells formed into a region which followed and encased the shock. Buffer

cells were used in this calculation to stop the shock escaping from the fine region. The

problem was run with both the bulk artificial viscosity and the Christensen artificial

viscosity. The shock width was comparable to those obtained with a 100



from the fine regions. To remove this problem buffer cells were introduced. The results

then showed one region of fine cells encasing both the rarefaction fan and the contact

discontinuity and another region surrounding the shock. The density was used for the

refinement criteria because it would vary around the contact discontinuity unlike a

pressure refinement criteria.

The shock width and relative density error were comparable to a 100× 10 uniform grid

calculation. The adaptive mesh calculation increased the number of elements over time

as the rarefaction and shock regions grew, see Figure 4.11. The maximum number of

elements reached 550 because the fine region was quite extensive. However this is still

less than half the elements required for a 100 ×



The adaptive mesh calculation took 6 minutes of cpu time as opposed to the uniform

100× 100 grid calculation that took 17 minutes. Clearly the adaptive mesh reduces the

calculation time by around 1/3. Throughout the run the number of elements increases

at a fairly constant rate as the high density oval region grows, see Figure 4.15. Therefore

although 70% of the domain is refined by t=0.2 the smaller number of elements at earlier

times substantially reduces the run time. The total number of elements for the whole

adaptive calculation is just below 60% of the value for the uniform grid calculation.

A remaining area to be considered is whether derefinements involving only a couple of

elements are more expensive than the saving they provide from reducing the number of

elements. In conclusion this example has shown how successfully the two dimensional

refinement can reduce the calculation time without degrading the solution.
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Chapter 5

Conclusions and Further Work

An adaptive mesh technique has been developed that builds upon a staggered grid La-

grangian code. The Lagrangian code uses spatial finite elements and predictor-corrector

time discretisation. The Lagrangian code has been validated on a Sod shock tube prob-

lem. An Axisymmetric form of the code has been tested on a radial Sod problem.

Good results were obtained considering the use of artificial viscosity. A two dimensional

version of Christensen’s artificial viscosity gave less oscillatory results than the bulk



stored separately therefore the technique is a cross between adaptive mesh refinement

and adaptive mesh insertion. The method automatically refines elements where the

density gradient is high. Disjoint nodes are used at the interfaces between coarse and

fine elements, no ghost cells are required. The present method only considers one level

of refinement and is not adaptive in time.

Excellent results were achieved for a piston problem and Sod’s shock tube. The mesh

refined or derefined to follow the features of interest. The inclusion of buffer cells has

made sure that interesting features are always fully encased in a fine area, therefore no

spurious reflections are generated. The adaptive calculations show the same shock width

and relative error as calculations performed with a uniform grid at the finer resolution.

The adaptive run times are significantly faster. However, the number of coarse and fine
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