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Abstract

A solution method for the computation of steady Euler flows in one-
dimension is presented. The approach is to combine the solution of the
governing equations in a Lagrangian reference frame with an algorithm to
remap the computational mesh. The aim is to retain the accuracy inherent
with Lagrangian schemes and to av
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1 Introduction

The Euler equations for one-dimensional unsteady compressible flow, in the
reference frame of a moving control volume, can be expressed in integral form

il
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Lagrangian phase can then be considered as a solution for the sound wave
related transport, and the rezoning of the grid can be viewed as the solution
for the adv
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Figure 1: 2 — ¢ diagram of the computational mesh

In order to preserve conservation, the volume for cell I; is updated by
discretising the one-dimensional geometric conservation law (GCL)

Q :
o _ / i dl = 0 (8)
in the following manner
Qrt—qQr
— Ay = T it (9)

Here ,_1 is the grid velocity normal to the boundary Tt Therefore, since

2
i = u (Lagrangian reference frame), the volume is explicit



Time integration of particle position x; is performed according to an es-
timate of the displacement of the centre of volume of cell I,

n 1 1

@ = grran; (T (s e g ) (12)

where z,_1 = @, 1At is the additional cell volume created by normal dis-
2 2
placement of the boundary «” ,, (G, 1 is the outward normal velocity to the
=3 2
boundary z? ,), giit = (28 1 + ui_%At/Z) is the position of the centre of
2 2
Zists and AQ); = 2}20 Zicl is the total change in cell I; volume over time
interval At [1].
This calculation can be viewed as a weighted av



Here u? = 0 and the sound speed is the only contribution to S .. Un-

derestimating the value of 5], results in a choice of At that is too large
and instabilities may develop from the beginning of the computations. To

circumvent this problem the C.s constant in (13) is reduced to 0.1 for the



The cell particles and their movements are indicated by the lines A— A and
C' — (. The interface between the two relevant cells, which by definition is the
contact wave of the Riemann problem, has position through time indicated
by the line B — B. The * superscript denotes the wave-processed states i.e
the data states that are created due to the passage of three waves emerging
from the origin of the initial discontinuity. Sz, S*, and Sgr are respectively
the speed estimates for the left, contact and right waves.

It is required to calculate a numerical flux across the line B — B, that is
across the cell interface, over time interval At.

Applying conservation of U on A — B over the time interval At gives

A
(5 -+ SLAt> Uy + (—bpAt) + ALS*U; (15)
B A
_ ;UL + AtF;, — AtF;
= (Sp —ur)Up + (5" = 5) Uy =F; —F, (16)
= F;+(5"—-5,)U; =F + (up, — 51) Up, (17)
= F;=F,+U; (5" —5.) - Uy (S —up) (18)

Similarly, conservation of U on B — (' over the time interval At yields

FE—I—(S*—SR)UE:FR—I-(UR—SR)UR (19)
= Fr=Fr+Uy(S"—5.) —Ur(Sk — ur) (20)
The wave processed states and the corresponding lagrangian fluxes take
the form
Prc 0
Uy = PrUK and Fj = Pk ) (21)
Pk K URPK

where K = L, R and 5" = u} = uj, = v* = u; 1 is an approximation of
the fluid velocity normal to the boundary z, L. T%herefore, by substitution
of these quantities into (17) and (19), and by consideration of the individual
rows of these vector equations, it can be shown that

(SK - UK)
o= ek T K 22
p[& pI (S](_S*) ( )
(SK - UK)
W = preai LG 23
p[& uIX pI (S]{ _ S*) ( )
p} = PK +pPK (UK - SK) (UK - S*) ) (24)



and

(SL - UL) PK )]
o= e (s ) (S — )] (25
PK R P (SL _ S*) K ( K ) g PK (SI( . UI() ( )
for K = L, R. The intercell numerical flux is then calculated via averaging
of equations (18) and (20)
F, | = (Fj +F) /2, (26)

where the U%,, K = L, R, vector in (18) and (20) are obtained using equa-
tions (22), (23) and (25).

Following the original approach suggested by Toro et. al. [12], the wave
speed estimates, Sp, S*and Sk, are acquired from

St =ur —arqr . S*=u", Sr=1ur+arqr, (27)

where ay,, ap are the local sound speeds in the undisturbed fluid, and ¢, for
K = L, R, is a parameter defined by

1 Hg <1
K = \/1 + % (Hg — 1) otherwise (28)

Here Hx = p*/pr, and p* and u* are estimates for the wave processed presure
and velocity. If the K wave is a rarefraction then the speed Sk corresponds
to the characteristic speed of the head of the rarefraction. If the wave is a
shock then Sg corresponds to an approximation to the true shock speed; the
wave relations used are exact but the pressure ratio across the discontinuity
is approximated, because the value of p* is an estimate.

In this work, values for p* and u* are calculated using the adaptive/hybrid
approach proposed by Toro [12], which is based on his exact Riemann solver.
The method is described algorithmically below:

o The initial approximation for the pressure is evaluated using

- 1 1 __
P = 5 (P +pr) = 5 (up —up)pa, (29)
where @ = (ap, + ar) /2 and p 1,



o If pI\ < Pmin, suggesting that the 2 non-linear waves in the exact
solution to the Riemann problem are rarefraction waves, then

-1 z
o aL‘|‘GRa_LWTa(UR_UL)] 7 (32)
=L 4 =&
P71, Pr
i)
W= u,— ——|[— ) —1]. 33
=6 .
Wherez::wz;l.
5

o Else the 2 non-linear waves in the exact solution of the Riemann prob-
lem are assumed to be shock waves, and

v 9r(po)pr +9r(po) PR — (UR — uL)
P gr. (po) + gr (po) 7 (34)
. 1
U = 5 (UL1—|- uR) +
5 17" =pr)gr (po) = (7" = pr) gz (po)] ,  (35)
where
i = |2 (3)
2
Ag = m7 (37)
_ (=D -
Br = o 1)pK , K =L,R, (38)
and
Po = max (Oaﬁi*nt) . (39)

The initial appro



Second Order Accuracy For HLLC

In this work, second order accuracy for the Lagrangian HLLC Riemann solver
is achieved using the MUSCL-Hancock approach [12]. The method can be
divided into 3 stages:

Stage 1: Data Reconstruction

The piecewise constant data cell average values U are locally replaced by
piecewise linear functions in each cell [:1;2»_%, T, %] according to

Ul (z)=Ul+ (z — a;) 5y, T € [z; L %], (40)

where &; is a vector of limited first derivative approximations. The values of
U? (x) at the cell boundaries of cell I; are

Ul = ur - 2'02' and (41)
Az
Ul = U?+T$m, (42)

and are called boundary extrapolated values.
The two alternative methods used in this work for evaluating the vector
o; are described in detail in the next subsection.

Stage 2: Evolution

The boundary extrapolated values U¥ and U¥ are considered to be cell av-
erage values, and are evolved by %At using a conservative scheme in which
the numerical flux is equal to the exact flux function evaluated at the ex-
trapolated values. That is,

— 1 At
T

| A7 [F(UH) (U] (43)//TD1E)//TDLi)






Wave-By-Wave Slope Limiting.

The vector &; in cell I; is taken to be a function of the derivatives (—_

A1

and | —= |, namely
AT
ad

where

The arguments A, 1



thus, allowing the limiting process to be applied wave-by-wave.

The limited derivatives are evaluated component-wise using

2
R T T W v o (m)
max [0, min Ae,_1 Do, s » TT11 Az, Ar, 1 Ai i =0
2 2 2 2
| oA A it St W RN
min O,maX Al’i_l 9 Awi+l 7ma'X Axi—l7 A$i+l AZ % S 0
2 2 2 2
(55)

where the value § = 1 reproduces a minmod-type limiter, and 5 = 2 repro-
duces a superbee-type limiter.

Equation (55) has been established by forcing equivalence of MUSCL-
type schemes with conventional flux limiter methods, for the model scalar
equation on a fixed Eulerian grid [12]. The result then being modified to
allow for the varying cell volumes associated with Lagrangian methods.

4 The Roe Solver

The Roe solver calculates a numerical approximation to the solution of hy-

perbolic conservation laws by solving a constant coefficient/TD///TD1.Tj1T//TflatE/TD1/Tclc
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Figure 4: Schematic of approximate Riemann solution in Lagrangian control volume

ABC.
For a fixed grid, diagonalising the Roe linearisation for the system of non-
linear equations allows the flux between the two adjacent cells I; and I; 4

(i.e the flux across the t-axis) to be written as
S‘l dfmg |5\adv
(56)

[N

F; 1 (UL, Ug) =

0
K=LR,

where
Fx (UK) =ugUg + PK )
UKPK
(58)

(2)] 7

the wave strengths are given by
1 L .
57 [(pr = pr) (i 4 @) = (prur — prus) — ad
> + a(prur — prur) —

H—a?
(59)

5 L ton = o)

@ _
% d2

| (PR R—pL L)] )
(60)

(pr—pr) — (D +a®)

2
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the eigenvalues are

5‘z(zld)v =u ) 5‘1(:31) = —a, (61)
5‘z(jl)v =1u ) 5\521) =0, (62)
5\2(1:)()1)v =1u ) 5‘521) =a, (63)

and the corresponding right eigenvectors are

1
(64)

Here, &t = u, 1 is an approximation of the fluid velocity normal to the bound-

1

3

ary x;, 1, and
2

Y pPLUL + \/PRUR (65)
VPL T /PR

N Hp + /prH

g - ¥rrhr + /PRIR (66)

NN

-1
@ = (y—1) [H — 5112] : (67)
Here Hyg, K = L, R, is the total enthalpy
P S S (68)
PK

The tilde is used to indicate a Roe averaged value.

The flux function (56) has been written in such a way that its value, the
flux relative to a fixed grid, can be split naturately into two quantities; the
flux which is a result of advection with the flow; and the flux relative to the
flow.

Therefore, to determine the flux between the two cells I; and I; ; in a
Lagrangian frame of reference (i.e. the flux across the B — B in Figure 4),
one simply subtracts the flux resulting from advection with the flow from
equation (56)



and the remaining variables are given by equations (58) to (67).

It is well known that Roe’s scheme for the Euler equations on a fixed
grid permits non-physical stationary discontinuities; a sonic expansion wave
may be incorrectly approximated by a rarefraction shock. Hence, Roe’s ap-
proximate Riemann Solver in general does not satisty an entropy inequality.
However, it can be modified to eliminate these entropy violating discontinu-
ities while retaining those that satisfy the entropy law. Such an entropy fix
is not necessary in the Lagrangian case, because shock and expansion waves
move with respect to the Lagrangian reference frame [15].

Second-Order Accuracy For Roe

In this work, second-order accuracy for the Lagrangian Roe solver is achieved
using flux limiting. The method is to linearize the system of non-linear equa-
tions using Roe’s approximate Riemann solver, diagonalise, and then apply
flux-limiting to each of the resulting scalar equations [4].

Taking Godunov’s scheme to calculate the first-order flux and the Lax-
Wendroff scheme to evaluate the second-order flux, the numerical flux be-
tween cell I; and I; 1, for the corresponding fixed grid flux-limiter solver,
can be written as

1

F, 1 (Ur, Ug) = 5 Fr(Uz)+ Fr(Ug) -

Al - .
1—é.[1— PRUQIISY
{[ ¢< Ba et

R

—

m=



e the minbee limiter:

0 r<9J0
dlry=<¢ r 0<r<1 | (73)
1 r>1
e the van Leer limiter:
0 r<0
o =% 120 (71)
e the superbee limiter:
0 r<90
2r 0<r< %
o(r)=q 1 3=1 (75)
r 1<r<2
2 r>2

Subtraction of the flux resulting from advection with the flow from equa-
tion (71) produces the required second-order accurate Lagrangian flux

1
(Ur,Ur) = 5

F.
2

1
vo3

F,(Uy)+Fr(Ug) —

where Fr, Fp are given by equation (70), ¢ = ¢(r) with

o,
~—

O

ot . . 1 . Y(m
and i =i+ 3 + sign <A£el)> ) (77)

O
I

and the remaining variables are given by equations (58) to (67) and (73) to
(75).
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5 Rezoning
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Figure 6: « — U diagrams for cell I; of cell contraction and expansion resulting from the
Lagrangian phase.

&,_1 and are dependent on the type of data reconstruction applied in each
cell’

As discussed earlier, the rezoning phase can be viewed as an advection
process. Interpreting equation (81) in this way, the quantity 5(22»_% can be

seen as a volume flux, and the components of the vector ]?‘Z»_; can be viewed as
2

advection fluxes divided by the velocity normal to the corresponding bound-

ary. That is

=

[N

=2 (83)

7 —

o8

1
=3

[T

where F,_1 is a vector of numerical advection fluxes which are to be evalu-
2

ated. ]?‘Z»_1_ is known as a vector of effective fluxes. Moreover, expression (78)
2
can be substituted directly into equation (81) to produce the more familiar
form of the non-linear advection equation
TT Q? ! ( n 1 At . - g r;
U, = 0, ngi + Q1 1Ko =@ o F, %} : (84)

s
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From a practical view point the vector equation (81) can be written in



being remapped back to their initial position, equation (12) is made redun-
dant when rezoning is carried out at each time step. A similar observation
concerning boundary positions can be made, leaving it unnecessary for the

values :1;?_11, t=0,1,..., to be calculated and stored.
2

6 Interface Tracking

The aim of this section is to present in detail a method for improving the
resolution of the numerical solution profile at a material interface. The tech-
nique, developed b



The Initial Discretisation.

At an initial time ¢ = t°, a material interface is assumed to be located
at position z;,, and the computational domain is divided into uniform
compututaional cells of size Az, as detailed in Section 2. If z;, coincides
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boundary which is aligned with the material interface is not remapped. The
boundary iy 1 remains where it was positioned at the end of the Lagrangian



The reconstruction process can be divide into two stages. The first stage
is the merging of the non-uniform cell with volume less than %Al‘ with its ad-
jacent non-uniform cell. The second stage involves dividing the non-uniform
cell with volume greater than %Al‘ into a smaller non-uniform cell and a uni-
form mesh cell. By definition the smaller non-uniform cell will have volume

AT, — Az > %Al‘



' — Uim‘+1
: Uinf ®
U
__ U'I; ’
Uim‘—l_.,,--"‘ ! 7
— @ b _ int+1
U : ]inf
°- 7o ,
int—1; .
L i L 4 L -
_ Tint- new _finf _ Tint+1 _
‘rim‘ff, xi]l = ‘liuff%riuf+% Iim‘+%
Afinf—l Afirzf AI_’illT+1
‘ ' Uiuf
! Y
i 4
. 1
. Uinffl :
Uiuf—_’ ——— jiuf
\ 4 1
v ¥ 1
int—2 Lint—1 :
& & i @
. Tint—2 . Zint-1 new . Tint .
l,‘m,% 1'111‘7% “ip = ‘l'inz‘f% Iint+%
A«finffl = Aw Afinffl A‘finf

Figure 10: = — U diagram illustrating cell reconstruction for Uipy 1 > 0.

Cell Division

If the material interface tra






where 0;,;_1_) 1s a vector of limited first derivative approximations, and k is
given by equation (99). The Vector Oini—1—k 1s taken to be a function of the

Aznt—7—2k znt———4
vectors | z=—"—— and , namely
T2 ok -
s 2

Aznt ——2k Aint %—4k

Cint—1—k = Cini—1—k A7 AT , (107)
xznt —2k xznt %—4]6
where
Aint—%—zk = Uipi—1-26 — Ujpi_z_grand (108)

Aznt— Tl






compariative reasons and full details of their implimentation can be found
in the book by E. F. Toro [12]. Figures 21 to 29 show the results generated
b



the most promising, producing the most accurate solution profile of the three
limiters studied. The superiority of the van Leer limiter over the minbee
limiter, is also demonstrated.

Lagrangian Methods.

The results from the first-order HLLC and Roe schemes are presented in Fig-
ures 21 and 22 respectively. Both figures show equally poor shock resolution,
smearing the profile across six cells. The contact discontinuity is captured
well by both of the schemes, with the HLLC method exhibiting a slightly
sharper resolution. The HLLC results contain an overshoot immediately
ahead of the contact dicontinuity, whilst in the Roe results an oscillation is
visible directly behind the contact wave. Diffusion of the rarefraction wave,
typical of that expected by first-order schemes, is visible in both figures. The
Roe scheme achieves greater accuracy at the shock wave than the HLLC
scheme.

The results from the second-order HLLC and the Roe schemes are dis-
played in Figures 23 to 29. Figures 23 to 26 show results for the HLLC
method using slope limiters which are ‘equivalent’ to the flux limiters min-
bee and superbee. Figures 27 to 29 present the results obtained using the
flux limited version of Roe’s scheme with the minbee, V



Lagrange-Remap Methods.

The results from the first-order HLLC and Roe schemes are given in Figures
30 to 33. Figures 30 and 31 are a consequence of applying a piecewise con-
stant remap, whilst Figures 32 and 33 result from using a piecewise linear
remap.

The piecewise constant results show no signs of spurious oscillations.
There is considerable smearing of discontinuities, most noticable across the
contact wave, as highlighted on the density and energy plots. The Roe scheme
achieves greater accuracy at the shock wave than the HLLC scheme.

The piecewise linear results demonstrate an expected increase in accu-
racy over the piecewise constant results. However, spurious oscillations are
visible in the figures between the contact and shock waves. These fluctua-
tions are certainly more profound within the Roe results, where there exists
a substantial oscillation behind the shock discontinuity.

The results from the second-order HLLC and Roe schemes are displayed
in Figures 34 to 47. Figures 34 to 40 present results with a piecewise con-
stant remap, whilst Figures 41 to 47 show results created by applying a
piecewise linear remap.






the split HLL.C methods show erroneous fluctuations between the shock and
contact waves.

For the Roe scheme, limiter-wise it is visible that there is no obvious
advantage in adopting either the unsplit or the split approaches when con-
sidering accuracy across the shock and rarefraction waves. However, the
Lagrange-Remap results are polluted with large spurious oscillations which
are not visible in the Eulerian data. Moreover, when considering the results
from the Van Leer and superbee limiter, the contact resolution from the split
scheme can be viewed as poor when compared to that of the unsplit scheme.

Interface Tracking Method

The results to tests 1 to 3, generated using the second-order HLLC scheme
with a piecewise linear interface tracking remap procedure, are displayed in



The results from the shock tube problem would seem to suggest that
there is no obvious advantage in adopting a Lagrange-Remap approach over
an Eulerian method. In fact the data would perhaps prompt the reader to
disregard the option of using an split scheme altogether. However, to base
a judgement on the results from one test problem alone would be, at best,
naive. To make a more informed decision, it would be wise to consider a
greater range of test problems in which there were wave interactions and
dimensions greater than one.

The split scheme presents the opportunity to consider the solution for the
sound wave related transport and the advection related transport separately.
It is this authors opinion, that this decomposition offers greater potential
for developing an accurate ‘fixed grid’ solution method, than when faced
with the unsplit scenario. Moreover, in this work the results generated using
the Lagrangian sc



higher dimensions. In addition, there is scope for improving or even raising
the order of accuracy of the existing Lagrange and Remap phases of the split
scheme. For example, Sims [8] explored a piecewise parabolic (third order
accurate) remap algorithm.

Alternative methods for accurately resolving a material interface in one
and higher dimensions need to be investigated further.
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