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Abstract

A solution method for the computation of steady Euler �ows in one�
dimension is presented� The approach is to combine the solution of the
governing equations in a Lagrangian reference frame with an algorithm to
remap the computational mesh� The aim is to retain the accuracy inherent
with Lagrangian schemes and to av
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� Introduction

The Euler equations for one�dimensional unsteady compressible �ow� in the
reference frame of a moving control volume� can be expressed in integral form
as

�
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Lagrangian phase can then be considered as a solution for the sound wave
related transport� and the rezoning of the grid can be viewed as the solution
for the adv
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Figure 
� x� t diagram of the computational mesh

In order to preserve conservation� the volume for cell Ii is updated by
discretising the one�dimensional geometric conservation law �GCL�

��i

�t
�
Z
�i�t�

�x��n d� � � ���

in the following manner

�n��
i � �n

i

�t
� � �xi� �

�

 �xi� �

�
� ���

Here �xi� �
�
is the grid velocity normal to the boundary xi� �

�
� Therefore� since

�x � u �Lagrangian reference frame�� the volume is explicit



Time integration of particle position xi is performed according to an es�
timate of the displacement of the centre of volume of cell Ii�
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where zi� �
�
� �ui� �

�
�t is the additional cell volume created by normal dis�

placement of the boundary xn
i� �

�

� ��ui� �
�
is the outward normal velocity to the

boundary xn
i� �

�
�� gi� �

�
� �xn

i� �
�

 ui� �

�
�t��� is the position of the centre of

zi� �
�
� and ��i �

P�
j�	 zi� �

��j
is the total change in cell Ii volume over time

interval �t �
��
This calculation can be viewed as a weighted av



Here uni � � and the sound speed is the only contribution to Sn
max� Un�

derestimating the value of Sn
max results in a choice of �t that is too large

and instabilities may develop from the beginning of the computations� To
circumvent this problem the Ccfl constant in �
�� is reduced to ��
 for the



The cell particles and their movements are indicated by the linesA�A and
C�C� The interface between the two relevant cells� which by de�nition is the
contact wave of the Riemann problem� has position through time indicated
by the line B � B� The � superscript denotes the wave�processed states i�e
the data states that are created due to the passage of three waves emerging
from the origin of the initial discontinuity� SL� S�� and SR are respectively
the speed estimates for the left� contact and right waves�

It is required to calculate a numerical �ux across the line B �B� that is
across the cell interface� over time interval �t�

Applying conservation of U on A�B over the time interval �t gives�
�x

�
� uL�t
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 ��bL�t� 
 �tS�U�
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L � FL 
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	�UL �SL � uL� �
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Similarly� conservation of U on B � C over the time interval �t yields

F�

R 
 �S� � SR�U
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R � FR 
 �uR � SR�UR �
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� F�

R � FR 
U�

R

�
SR � S�
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The wave processed states and the corresponding lagrangian �uxes take
the form
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where K � L�R and S� � u�L � u�R � u� � ui� �
�
is an approximation of

the �uid velocity normal to the boundary xi� �
�
� Therefore� by substitution

of these quantities into �
�� and �
��� and by consideration of the individual
rows of these vector equations� it can be shown that

��K � �K
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for K � L�R� The intercell numerical �ux is then calculated via averaging
of equations �
�� and ����

Fi� �
�
� �F�

L 
 F�

R� �� � ����

where the U�

K� K � L�R� vector in �
�� and ���� are obtained using equa�
tions ����� ���� and �����

Following the original approach suggested by Toro et� al� �
��� the wave
speed estimates� SL� S�andSR� are acquired from

SL � uL � aLqL � S� � u� � SR � uR 
 aRqR � ����

where aL� aR are the local sound speeds in the undisturbed �uid� and qK� for
K � L�R� is a parameter de�ned by

qK �

�

 HK � 
q


 
 ���
��

�HK � 
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� ����

HereHK � �p��pK � and �p� and u� are estimates for the wave processed presure
and velocity� If the K wave is a rarefraction then the speed SK corresponds
to the characteristic speed of the head of the rarefraction� If the wave is a
shock then SK corresponds to an approximation to the true shock speed� the
wave relations used are exact but the pressure ratio across the discontinuity
is approximated� because the value of �p� is an estimate�

In this work� values for �p� and u� are calculated using the adaptive hybrid
approach proposed by Toro �
��� which is based on his exact Riemann solver�
The method is described algorithmically below�

� The initial approximation for the pressure is evaluated using
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� If �p�int � pmin� suggesting that the � non�linear waves in the exact
solution to the Riemann problem are rarefraction waves� then
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where z � ���
��

�

� Else the � non�linear waves in the exact solution of the Riemann prob�
lem are assumed to be shock waves� and
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The initial appro



Second Order Accuracy For HLLC

In this work� second order accuracy for the Lagrangian HLLC Riemann solver
is achieved using the MUSCL�Hancock approach �
��� The method can be
divided into � stages�

Stage �� Data Reconstruction

The piecewise constant data cell average values Un
i are locally replaced by

piecewise linear functions in each cell �xi� �
�
� xi� �

�
� according to

Un
i �x� � Un
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 �x� xi� 
	i � x � �xi� �
�
� xi� �

�
� � ����

where 
	i is a vector of limited �rst derivative approximations� The values of
Un

i �x� at the cell boundaries of cell Ii are

UL
i � Un

i �
�xi
�

	i and ��
�

UR
i � Un

i 

�xi
�

	i � ����

and are called boundary extrapolated values�
The two alternative methods used in this work for evaluating the vector


	i are described in detail in the next subsection�

Stage �� Evolution

The boundary extrapolated values UL
i and UR

i are considered to be cell av�
erage values� and are evolved by �

�
�t using a conservative scheme in which

the numerical �ux is equal to the exact �ux function evaluated at the ex�
trapolated values� That is�
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Wave�By�Wave Slope Limiting�

The vector 
	i in cell Ii is taken to be a function of the derivatives
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thus� allowing the limiting process to be applied wave�by�wave�

The limited derivatives are evaluated component�wise using
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where the value 
 � 
 reproduces a minmod�type limiter� and 
 � � repro�
duces a superbee�type limiter�

Equation ���� has been established by forcing equivalence of MUSCL�
type schemes with conventional �ux limiter methods� for the model scalar
equation on a �xed Eulerian grid �
��� The result then being modi�ed to
allow for the varying cell volumes associated with Lagrangian methods�

� The Roe Solver

The Roe solver calculates a numerical approximation to the solution of hy�
perbolic conservation laws by solving a constant coe!cient60.0001 TD2 6.9999 -47.9998 TD
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For a �xed grid� diagonalising the Roe linearisation for the system of non�
linear equations allows the �ux between the two adjacent cells Ii and Ii��
�i�e the �ux across the t�axis� to be written as
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�UL�UR� �
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the wave strengths are given by
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the eigenvalues are
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and the corresponding right eigenvectors are
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Here� �u � ui� �
�
is an approximation of the �uid velocity normal to the bound�

ary xi� �
�
� and
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Here HK� K � L�R� is the total enthalpy

HK �
EK 
 pK

�K
K � L�R � ����

The tilde is used to indicate a Roe averaged value�
The �ux function ���� has been written in such a way that its value� the

�ux relative to a �xed grid� can be split naturately into two quantities� the
�ux which is a result of advection with the �ow� and the �ux relative to the
�ow�

Therefore� to determine the �ux between the two cells Ii and Ii�� in a
Lagrangian frame of reference �i�e� the �ux across the B � B in Figure ���
one simply subtracts the �ux resulting from advection with the �ow from
equation ����

Fi� �
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�UL�UR� �
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�X
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���m�
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j���m�
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and the remaining variables are given by equations ���� to �����

It is well known that Roe�s scheme for the Euler equations on a �xed
grid permits non�physical stationary discontinuities� a sonic expansion wave
may be incorrectly approximated by a rarefraction shock� Hence� Roe�s ap�
proximate Riemann Solver in general does not satisfy an entropy inequality�
However� it can be modi�ed to eliminate these entropy violating discontinu�
ities while retaining those that satisfy the entropy law� Such an entropy �x
is not necessary in the Lagrangian case� because shock and expansion waves
move with respect to the Lagrangian reference frame �
���

Second�Order Accuracy For Roe

In this work� second�order accuracy for the Lagrangian Roe solver is achieved
using �ux limiting� The method is to linearize the system of non�linear equa�
tions using Roe�s approximate Riemann solver� diagonalise� and then apply
�ux�limiting to each of the resulting scalar equations ����

Taking Godunov�s scheme to calculate the �rst�order �ux and the Lax�
Wendro	 scheme to evaluate the second�order �ux� the numerical �ux be�
tween cell Ii and Ii��� for the corresponding �xed grid �ux�limiter solver�
can be written as
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� the minbee limiter�
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Subtraction of the �ux resulting from advection with the �ow from equa�
tion ��
� produces the required second�order accurate Lagrangian �ux
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where FL�FR are given by equation ����� 
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and the remaining variables are given by equations ���� to ���� and ���� to
�����
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� Rezoning
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Figure �� x�U diagrams for cell Ii of cell contraction and expansion resulting from the
Lagrangian phase�

�xi� �
�
and are dependent on the type of data reconstruction applied in each

cell�
As discussed earlier� the rezoning phase can be viewed as an advection

process� Interpreting equation ��
� in this way� the quantity ��i� �
�
can be

seen as a volume �ux� and the components of the vector 
Fi� �
�
can be viewed as

advection �uxes divided by the velocity normal to the corresponding bound�
ary� That is


Fi� �
�
�
Fi� �

�

�xi� �
�

� ����

where Fi� �
�
is a vector of numerical advection �uxes which are to be evalu�

ated� 
Fi� �
�
is known as a vector of e	ective �uxes� Moreover� expression ����

can be substituted directly into equation ��
� to produce the more familiar
form of the non�linear advection equation
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From a practical view point the vector equation ��
� can be written in



being remapped back to their initial position� equation �
�� is made redun�
dant when rezoning is carried out at each time step� A similar observation
concerning boundary positions can be made� leaving it unnecessary for the
values xn��

i� �
�

� i � �� 
� � � � �M to be calculated and stored�

� Interface Tracking

The aim of this section is to present in detail a method for improving the
resolution of the numerical solution pro�le at a material interface� The tech�
nique� developed b



The Initial Discretisation�

At an initial time t � t	� a material interface is assumed to be located
at position xip� and the computational domain is divided into M uniform
compututaional cells of size �x� as detailed in Section �� If xip coincides
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boundary which is aligned with the material interface is not remapped� The
boundary xint� �

�
remains where it was positioned at the end of the Lagrangian



The reconstruction process can be divide into two stages� The �rst stage
is the merging of the non�uniform cell with volume less than �

�
�x with its ad�

jacent non�uniform cell� The second stage involves dividing the non�uniform
cell with volume greater than �

��x into a smaller non�uniform cell and a uni�
form mesh cell� By de�nition the smaller non�uniform cell will have volume
�xi ��x � �

�
�x
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Cell Division

If the material interface tra
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compariative reasons and full details of their implimentation can be found
in the book by E� F� Toro �
��� Figures �
 to �� show the results generated
b



the most promising� producing the most accurate solution pro�le of the three
limiters studied� The superiority of the van Leer limiter over the minbee
limiter� is also demonstrated�

Lagrangian Methods�

The results from the �rst�order HLLC and Roe schemes are presented in Fig�
ures �
 and �� respectively� Both �gures show equally poor shock resolution�
smearing the pro�le across six cells� The contact discontinuity is captured
well by both of the schemes� with the HLLC method exhibiting a slightly
sharper resolution� The HLLC results contain an overshoot immediately
ahead of the contact dicontinuity� whilst in the Roe results an oscillation is
visible directly behind the contact wave� Di	usion of the rarefraction wave�
typical of that expected by �rst�order schemes� is visible in both �gures� The
Roe scheme achieves greater accuracy at the shock wave than the HLLC
scheme�

The results from the second�order HLLC and the Roe schemes are dis�
played in Figures �� to ��� Figures �� to �� show results for the HLLC
method using slope limiters which are "equivalent� to the �ux limiters min�
bee and superbee� Figures �� to �� present the results obtained using the
�ux limited version of Roe�s scheme with the minbee� V



Lagrange�Remap Methods�

The results from the �rst�order HLLC and Roe schemes are given in Figures
�� to ��� Figures �� and �
 are a consequence of applying a piecewise con�
stant remap� whilst Figures �� and �� result from using a piecewise linear
remap�

The piecewise constant results show no signs of spurious oscillations�
There is considerable smearing of discontinuities� most noticable across the
contact wave� as highlighted on the density and energy plots� The Roe scheme
achieves greater accuracy at the shock wave than the HLLC scheme�

The piecewise linear results demonstrate an expected increase in accu�
racy over the piecewise constant results� However� spurious oscillations are
visible in the �gures between the contact and shock waves� These �uctua�
tions are certainly more profound within the Roe results� where there exists
a substantial oscillation behind the shock discontinuity�

The results from the second�order HLLC and Roe schemes are displayed
in Figures �� to ��� Figures �� to �� present results with a piecewise con�
stant remap� whilst Figures �
 to �� show results created by applying a
piecewise linear remap�





the split HLLC methods show erroneous �uctuations between the shock and
contact waves�

For the Roe scheme� limiter�wise it is visible that there is no obvious
advantage in adopting either the unsplit or the split approaches when con�
sidering accuracy across the shock and rarefraction waves� However� the
Lagrange�Remap results are polluted with large spurious oscillations which
are not visible in the Eulerian data� Moreover� when considering the results
from the Van Leer and superbee limiter� the contact resolution from the split
scheme can be viewed as poor when compared to that of the unsplit scheme�

Interface Tracking Method

The results to tests 
 to �� generated using the second�order HLLC scheme
with a piecewise linear interface tracking remap procedure� are displayed in



The results from the shock tube problem would seem to suggest that
there is no obvious advantage in adopting a Lagrange�Remap approach over
an Eulerian method� In fact the data would perhaps prompt the reader to
disregard the option of using an split scheme altogether� However� to base
a judgement on the results from one test problem alone would be� at best�
naive� To make a more informed decision� it would be wise to consider a
greater range of test problems in which there were wave interactions and
dimensions greater than one�

The split scheme presents the opportunity to consider the solution for the
sound wave related transport and the advection related transport separately�
It is this authors opinion� that this decomposition o	ers greater potential
for developing an accurate "�xed grid� solution method� than when faced
with the unsplit scenario� Moreover� in this work the results generated using
the Lagrangian sc



higher dimensions� In addition� there is scope for improving or even raising
the order of accuracy of the existing Lagrange and Remap phases of the split
scheme� For example� Sims ��� explored a piecewise parabolic �third order
accurate� remap algorithm�

Alternative methods for accurately resolving a material interface in one
and higher dimensions need to be investigated further�
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